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Outline

1. Introduction

o Transverse single particle dynamics including systems of many non-interacting
particles
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. (U
Introduction !ﬂ‘

- In this lecture we will treat the transverse motion of beam particles

- We focus on circular machines (in fact synchrotrons)

- In the course of this lecture series we will encounter several examples of

collective effects observed in the CERN accelerator complex

Proton Synchrotron Booster (PSB)

Proton Synchrotron (PS)

Super Proton Synchrotron (SPS)

Large Hadron Collider (LHC)
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CERN accelerator complex “ﬂ“
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What is a synchrotron?

<€—— Dipole magnets to bend the beam on the circular orbit
<—— Quadrupole magnets to focus the beam

<€—— Radio Frequency (RF) cavity to accelerate the beam

Lorentz force

- Motion of single particle is described by ﬁ — q(E + U X E)

- Main characteristics of synchrotrons

- Use electric fields to accelerate and magnetic fields to guide particles

- Design orbit is fixed at a given radius independent of the beam energy (magnetic
field is increased proportional to momentum)

- Beam is accelerated during many revolutions passing through the same RF cavity

- Accelerating RF is synchronized with particle revolution frequency - “Synchrotron”
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Coordinate system I

- We use a co-moving coordinate system to describe the particle motion around
the reference orbit

- The origin O is moving along with “synchronous particle”, i.e. a reference particle that
has the design momentum and follows the design orbit

- Mean radius R is defined through machine circumference C = 2a R
- Transverse coordinates x and y relative to reference particle (where x,y << R)
- Longitudinal coordinate z relative to reference particle

- Position along accelerator is described by independent variable s = vt
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Dipole magnets — beam guidance

N

dipole magnets: uniform magnetic field in y direction

- In a uniform magnetic field B, a particle with charge e, velocity v, rest mass m and
Lorentz factor y follows a circular trajectory with bending radius p

2
muv
evB = B p
p _— Bp ==
\ ) \ ) (&
¥ \
Lorentz force  Centrifugal force magnetic rigidity

- The magnetic field of dipole magnets in a synchrotron defines

- the reference trajectory (orbit) around the machine

- the reference momentum (through the magnetic rigidity)
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Dipole magnets — weak focusing !ﬂ’rg

Consider a particle with initial offset from reference orbit in a uniform magnetic

field in y direction
P

particle with
initial offset

reference orbit

The particle performs a harmonic oscillation with frequency w

T = xq cos (wt + @) W=
.. . i d*x d*x 1
This is the weak focusing in horizontal plane: " = = = ——x

ds?  v2dt2 p2
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Quadrupole magnets — strong focusing I\s‘l‘g

| AT
A

“focusing” “‘defocusing”  “focusing”  “defocusing”
quadrupole quadrupole  quadrupole  quadrupole

Magnetic field proportional to offset results in linear restoring force

X
B, = —gx F, = —evgx T::?_[:\:\\
Lo
—=S=>
B, = —gy F, = +evgy ___k_)_t:: ,,,, .

Force is focusing in one plane while defocusing in the other - need to alternate
between focusing and defocusing quadrupoles (“alternating gradient lattice”) to
achieve overall focusing in a particle accelerator or transfer line

In accelerator design we use the normalized quadrupole strength K = 9

Bp
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Equations of motion gpl

Consider linear fields (dipoles + quadrupoles) and on-momentum particles

quadrupoles dipoles (“weak focusing”) ) .
\ / Hill’s equations
1
7= (K0 ) 70 o+ Ko(s)z =0
can be written as:
y' + K(s)y =0 y' + Ky(s)y =0

Linear equations with s-dependent coefficients
- equivalent to harmonic oscillator with s-dependent dependent frequency

- inaring (or transport line with symmetries), the focusing terms are periodic:
Ko (s) = K4(C + 5) K, (s) = K, (C +5)

Not straightforward to derive analytical solutions for whole accelerator ...
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Element-wise solution of Hill's equations !ﬂ‘rs

Consider a part of the accelerator where focusing term is constant: K=K,

u” + Kou =0 ... ustands for xory

This is the equation of a harmonic oscillator with the element-wise solutions

u(s) = C(s)u(0) + S(s)u’(0)
... u(0) and u’(0) are the initial conditions

u'(s) = C'(s)u(0) + S (s)u’(0)

T O(s) = cos (VEgs),  S(s) = \/;(_Osin( Kos)  for K,> 0 (focusing)
where < C(s) = 1. S(s) = 5 for K, = 0 (drift)

| O(s) = cosh (v/[Kols),  S(s) = ——— sinh (v/[Kos) for K, < 0 (defocusing)

VKol

In general the solution can be written in matrix form

(’:’ ((i))> - (g ’((?) 5 ’((Z))) (’5’((%)))
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ransfer matrix formalism !ﬂ“g

The general transfer matrix from location s, to s is written as

(1), = Mol () = (el S0lm) ()

The transport through an accelerator or transfer line can be described by a
series of matrix multiplications

Sy S4 Sy S3 Sy S5
1+— I -
M(Sn|80) — M(8n|8n 1) 82|81) M(81|80)

\_Y_l

from s, to s,
)

A
from s, to s,

A
from s, to s,
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General solution of Hill's equation I\s‘l’g

The general solution of Hill’'s equations (“betatron motion”) can be written as

= uﬁu(s cos (Yu(s) + thu(s0))

— / COS wu ) + ¢u<30)> + sin (%(8) + zbu(SO))}

o u S 1 + au( )2 S) = ds
Bu(s), au(s)=— 5 Yu(8) = " Bu(s) Puls) Bu(8)
“Twiss” parameters at s Betatron phase

- The beta function is defined by the envelope equation (follows from Hill's equation)
26uBy — By + 485Ky =0
- The “action” J,, is a constant of motion (i.e. independent of s)

2Jy = Yuu? + 20w’ + Buu?
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Phase space ellipse &I'J'l

------------------- turn 1
turn 8

2 u ' !
V2Jyy YN ! —ay\/ 20y Bu
: u
- >
turn 5 /‘6 | !
—’ '
V QJM/’Yu :
turn 4 H
A\

The phase space coordinates (u, u’) of a single particle at a given location s in
the machine lie on the phase space ellipse when plotted for several turns.

The values of the Twiss parameters and therefore the orientation of the
phase space ellipse depend on the s location in the machine. The phase
space area enclosed by the ellipse is invariant and equal to 2J, .

The Twiss parameters are periodic with the machine circumference. Their
values are derived from the transfer matrix and they are uniquely defined at any
point in the machine.
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General transfer matrix I\s‘l’g

From the general solutions for u and u’ we can write

cos (1 (s8) + 1u(sg)) = % sin (1 (s) + Yulso)) = 4| B;—J(j)U/(S)—F—Q?(;)(S_)U(S)

The general transfer matrix from location s,=0 to s is obtained as

<’ZZ’((Z))> = Mau(s]s0) (;L’((SSZD

Ma(s]50) ( guu(iz)) (cos Athy, + avy(s0) sin Ay, Bu(50)Bu(s) sin A, )
u\S|S0) =
u(s0) —au(s) _ Itau(so)au(s) Bu(s0) B ]
Bu(50)Bu(s) Aty V/Bu(50)Bu(s) sin Agy B (s) (cos Ay, — ay(s) sin Ay,
* ds
Athy = ... betatron phase advance
0 Bu(s)

Note: for a given part of the accelerator, this general transfer matrix based on
beta functions is equivalent to the transfer matrix written in terms of K(s)
obtained earlier from the multiplication of element wise solutions

CERN @
January 2015 USPAS lectures 17

EARS /ANS CERN



Periodic transfer matrix I\ﬂl A

- Now we consider a periodic structure, in particular the transfer matrix for a full
machine circumference C

- the optics functions must be periodic and are therefore uniquely defined!
Bu(0) = Bu(C) = Bu 0, (0) = a0y (C) = vy,

- The phase advance over one turn is usually expressed as the betatron tune Q,,
which corresponds to the number of betatron oscillations per turn

¢ ds s 0 :i ¢ ds
0 Buls) YT om 0 Buls)

¢u:

- The one turn transfer matrix is obtained as

COS @y + Qg SIN Py B Sin @y,
M. (C0) = ( _ 14a? )

5 sin ¢, COS gy — Quy SIN Py
u
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Smooth approximation I\m.g

An estimation of the average beta function from the betatron tune (or
conversely an estimation of the tune from the average beta function) for an
accelerator with radius R can be obtained by:

Q—i ' ds _2rR 1 R
Yo 0 ﬂu(S)N 27 <6u>_<5u>
R
O B

Corresponds to a uniform focusing channel and is often used for quick

calculations and in particular for the theoretical treatment of transverse beam
instabilities. Since the betatron tune indicates the number of transverse
oscillations per turn, the Hill's equation in smooth approximation can also be

written as
2
1) Qu
4 =0
u + ( R) U
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Example: FODO cell was
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Example: lattice of the SPS
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Off-momentum particles — dispersion lﬂ“

Consider a particle having a momentum error Ap w.r.t. the reference particle

In a dipole magnet, off momentum particles have a different bending angle and
thus receive a different deflection compared to the reference particle. Off-
momentum particles therefore follow a different closed orbit along the machine.
1 Ap
p(s) p

The equation of motion in the horizontal plane becomes |z" + K, (s)z =

- Solution is sum of homogeneous and inhomogeneous part

z(s) = \/WCOS (Yz(8) + ¥z(s0)) + Dx(s)%

Y
. 1" _ particular solution ¢ \) Y
solution of =" + K, (s)z = with “dispersion” D, \

trajectory of off-
momentum

- Inserting x(s) into equation of motion yields
1

D7(s) + Kz(s)Dg(s) = ﬁ D.(s)*Ap/p defines the closed
P orbit for off-momentum particles
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Momentum compaction I\s‘l’s

The closed orbit for an individual particle depends on its momentum offset with
respect to the reference particle

0= Ap/p

To the lowest order in 9, the change of the circumference is given by

x D.(s)
AC’:}{—ds:b{ ds]d
p(s) p(s)
The momentum compaction factor o, relates the relative change of the

circumference to the relative momentum change
in a FODO lattice

AC/C 1 7{ Dy (s) o1
= = — ds Qo ~
0 Ap/pg C p(s) Q.°

«

The momentum compaction factor plays a central role for the longitudinal beam
dynamics (see Kevin’s lecture)
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Off-momentum particles — chromaticity

- Chromaticity is the dependence of the betatron tune on the relative momentum
offset of a particle
chromaticity

X relative momentum offset
T .§:¢::~~ — _ dQu
change of focusing strength for AQ, = 1 %Bu(s)AKu(s)ds ~
particles with different momenta 47
-7
~ | —— Bu(s)Ku(s)ds> J
K:i:@_)AK:_% <47‘(’
Bp p K P
focusing error is —_ (= _ L fﬁu(s)Ku(s)ds
—> AK = —-0K  prop. to relative Am
momentum offset natural chromaticity is always <0

- Chromaticity plays a fundamental role for transverse instabilities

- In many cases chromaticity needs to be adjusted - this can be done by sextupole
magnets installed in locations with non-zero dispersion
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Betatron detuning with amplitude I\s‘l’g

- Up to now we considered only linear magnetic fields (dipoles, quadrupoles) in
the equations of motion

- In a real accelerator there are also non-linear fields (from sextupoles for
chromaticity correction, from magnetic field imperfections, ...)

- In the presence of non-linear magnetic fields, the betatron tune Q, depends on the
betatron amplitude (action) J,

- To the first order in J, the detuning with amplitude can be written as
AQ:I: o Ao axy J:IZ
AQy Ayz  Gyy Jy

\ 4
“anharmonicities”

-  Octupole magnets induce first order detuning with amplitude in leading order and
can thus be used to adjust the anharmonicities

- In some cases detuning with amplitude is generated on purpose in order to fight
instabilities (e.g. in the LHC) ...
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Resonances

LD

- In the presence of optical machine imperfections the values of the betatron

tunes should not be on or close to a rational fraction

- Dipole errors deflect a particle each turn in phase if tune is an integer N

dipole error, Q = N Effect of dipole error in phase space

= ‘J:I\/E y y’

Q=N Q=N/2
dipole kicks add up cancellation
after two turns
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Resonances

- In the presence of optical machine imperfections the values of the betatron
tunes should not be on or close to a rational fraction

- Dipole errors deflect a particle each turn in phase if tune is an integer N

- Quadrupole errors are in phase if tune is an integer N or a half integer N+1/2

Effect of quadrupole error in phase space
quad error, Q =N + + y' y'

- /v P
] &“'-;‘“-v“ o

Y

o )

()

Q =N Q = N/2
_ quadrupole quadrupole
beam size grows each turn kicks add up kicks add up
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Resonances

- In the presence of optical machine imperfections the values of the betatron
tunes should not be on or close to a rational fraction

- Dipole errors deflect a particle each turn in phase if tune is an integer N

- Quadrupole errors are in phase if tune is an integer N or a half integer N+1/2

- The 2 dimensional resonance conditionis | kQ, +(Q, = m for k I, mintegers

4.6 e ——
WA i SRR |k| + || —>  order of the resonance
4.5 m - ”\,/\’\\\
N AN P // \
“r N S The tune diagram shows the resonance lines
4.3;:33" Sy o "\\‘ TR ‘\'\' where the betatron motion can be unstable
5 PRI, S N 'l (here up to 4" order)
a2k, 0, N 4,7‘
i ‘ :\(,71 < e Usually the strength of the resonance
NP ERE ool decreases as the resonance order increases
sof N y V%
SZARDNN L 7 The “working point” corresponds to the tunes
349 a0 a1 a2 43 41 a5 s of the machine (as defined by the focusing)
Qx
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Particle ensemble

4

- Up to now we were looking at individual particles ...

- Let's have a look at a beam consisting of N particles which are described by a

particle distribution function

/w(u,u’) dudu' = N

2.0 l&=3

15 |
1.0 |
05 |

g 0.0 |
—0.5 |
~1.0 |

=15}

-2.0

—0.08-0.06-0.04 —0.02 0.00 0.02 0.04 0.06
x [m]

January 2015

0.08

statistical moments of the distribution
(u) = %/uw(u,u')dudu’
1
(') = ¥ /u’¢(u,u')dudu’

2 1 2 / /
au—ﬁ/<u—<u>> (o) du du
2 1 / N2 / /
o —N/(u — (u"))" Y(u,u’) dudu
1 / / / /
S N/(u—<u>)(u ) () du
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ransverse emittance

- The beam size in the u-u’ phase space is usually quantified by the rms
statistical emittance (also called geometrical emittance)

\/02 2 —0

-  The transverse momentum in the accelerator is given by p.,, = mﬂc*yu’

- The Liouville theorem states that volumes in the canonical phase space u - p, are
invariant if their evolution is governed by a Hamiltonian (like beam transport through an
accelerator) - therefore the geometrical emittance (defined in the u-u’ phase space)
shrinks during acceleration (“adiabatic damping”)

- We define the normalized emittance, which is independent of beam energy

= [vey

- However there are effects that can lead to emittance blow-up, such as scattering
effects, filamentation due to non-linearities, wake fields, space charge effects, ...

CERN @
) January 2015 USPAS lectures 30

EARS /ANS CERN



ransverse phase space matching

- We can calculate the statistical TWISS parameters of a beam like

o2 2

abeam . _Uuu’ Bbeam —_u beam O
U - U c Yu -

Eu U Eu

- Abeam is matched to the optics at the injection point of a machine means that
the TWISS parameters of the beam are the same as the one of the machine

- If the beam is matched, the shape of the particle distribution remains stationary from
turn to turn

20 1e—3‘ : : Turp:9 .
matched

15 |
1.0 |
0.5 |
g 00 |}

-0.5 |
-1.0 }
-15 ¢}

-2.0

—0.08-0.06-0.04-0.02 0.00 0.02 0.04 0.06 0.08
X [m]
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Filamentation I

- Injecting a mismatched beam results in quadrupole oscillations, i.e. the shape
of the particle distribution will change from turn to turn

- In alinear lattice (with zero chromaticity), all particles have the same tune - the
bunch will perform quadrupole oscillations but the emittance is preserved

- In a non-linear lattice, the tune of a particle depends on its betatron amplitude - the
result is a dilution of the phase space area covered by the particle distribution, i.e.
the emittance grows and the beam quality is degraded

20 le—3 : : Turp:9 : : : 20 le—3 . : Turp:9 : ' '

15 | mismatched — linear lattice | 15 | mismatched — nonlinear lattice

10 | — 1.0 | . ;

0.5 | L { 0.5 | P> ' '
g 00 | ¢ 00 |

-0.5 | -0.5 |

-1.0 | -1.0 |

-15 | i ] -15 |

-2.0 : : ‘ : : : : -2.0 : : : : ‘ : :

~0.08-0.06 —0.04-0.02 0.00 0.02 0.04 0.06 0.08 ~0.08-0.06 —0.04 —0.02 0.00 0.02 0.04 0.06 0.08
x [m] x[m]

CERN §
January 2015 USPAS lectures 32

EARS /ANS CERN



Summary

- The linear transverse particle motion is described by Hill's equations
- The beam transport around the accelerator can be represented by “transfer’” matrices
- The number of oscillations around the closed orbit is called betatron tune Q

- The particle motion is described by a pseudo-harmonic oscillation with varying
amplitude (beta-function) and phase (betatron phase advance)

- In general the beam envelope (beam size) is varying around the machine

- The smooth approximation assumes a uniform focusing force around the accelerator

- Off momentum particles follow a different closed orbit (dispersion) and can have
a different tune in case the chromaticity is not corrected (using sextupoles)

- Non-linear elements (e.g. octupoles) introduce betatron detuning with amplitude

- To avoid beam envelope oscillations and emittance growth (in case of non-
linear magnetic elements), the beam distribution has to be matched to the
machine optics at the injection point
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