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Introduction

Single particle dynamics in the longitudinal 
plane



Outline

1. Introduction
o Collective effects
o Transverse single particle dynamics including systems of many non-interacting 

particles 
o Longitudinal single particle dynamics including systems of many non-interacting 

particles
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Longitudinal dynamics
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Longitudinal dynamics

Curvature radius

Cavity
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Longitudinal dynamics - drift
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Longitudinal dynamics - drift
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Longitudinal dynamics - drift

See Hannes' lectures
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Longitudinal dynamics - drift
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Longitudinal dynamics - drift

velocity can be positive or negative 
depending on whether particles are 
below or above transition
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Longitudinal dynamics – transition

● The phase slippage is a result of the competing of the two 
effects:

Design 
orbit
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Longitudinal dynamics – transition

● The phase slippage is a result of the competing of the two 
effects:

– Gain in velocity: i.e. high momentum particles
move faster

– Gain in path length: i.e. high momentum
particles travel on a longer path

– Below transition, the first effect wins:
high momentum particles will advance
compared to low momentum particles

– Above transition, the second effect dominates:
high momentum particles will fall back
compared to low momentum particles 

Design 
orbit

Off-momentum 
orbit
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Longitudinal dynamics – transition

● The synchronous particle has zero 
momentum offset and always takes T0 
to go around, i.e. is always observed 
with z=0.

● Particles with positive z arrive earlier at 
the observer (negative delay t), those 
with negative z arrive later (positive 
delay t)

● Bunched beams: below transition 
particles are focused back by 
deceleration. Opposite above transition.

● Coasting beams: below transition 
particles with positive momentum offset 
shear toward positive z (absence of 
focusing). Opposite above transition 
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The role of the RF - kick
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The role of the RF - kick
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The role of the RF - kick



Longitudinal dynamics – transition

Curvature radius

Cavity

The RF needs to compensate the 
natural dilution for focusing:
above transition, ahead particles 
should gain more energy → stable 
phase at 0 deg 

The RF needs to compensate the 
natural dilution for focusing:
above transition, ahead particles 
should gain more energy → stable 
phase at 0 deg 



Longitudinal dynamics – transition

Curvature radius

Cavity

The RF needs to compensate the 
natural dilution for focusing:
below transition, behind particles 
should gain more energy → stable 
phase at 180 deg 

The RF needs to compensate the 
natural dilution for focusing:
below transition, behind particles 
should gain more energy → stable 
phase at 180 deg 
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The role of the RF - kick
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The role of the RF - kick
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The synchrotron Hamiltonian
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The synchrotron Hamiltonian
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The synchrotron Hamiltonian
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The synchrotron Hamiltonian
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The synchrotron Hamiltonian
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The synchrotron Hamiltonian
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Single stationary bucket
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Single stationary bucket
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Single stationary bucket
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Single accelerating bucket
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Single accelerating bucket
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Multiple accelerating bucket
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Multiple accelerating bucket
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Small amplitude approximation
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Small amplitude approximation
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Small amplitude approximation
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Matching
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Matching
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Matching
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Matching
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Coupling to the transverse plane
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Coupling to the transverse plane

Modulation of the transverse frequency 
by the synchrotron frequency
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Summary

● Reference coordinates in the longitudinal plane
● The drift equation of motion
● Transition
● The kick equation of motion
● The synchrotron Hamiltonian
● Small amplitude approximation
● Multi-particle peculiarities
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THE END
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