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Introduction

Single particle dynamics in the longitudinal
plane
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1. Introduction
0 Collective effects

0 Transverse single particle dynamics including systems of many non-interacting
particles

0 Longitudinal single particle dynamics including systems of many non-interacting
particles
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Longitudinal dynamics

A particle’s longitudinal coordinates are given with respect to the two
reference coordinates.

* The reference momentum pq is defined by the magnetic rigidity

_Po
e

Bp

* The reference position is defined by the global fundamental RF
clock via the time of zero crossing of the fundamental RF voltage
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Longitudinal dynamics )

« We take a snapshot of the beam at the RF cavity

« ¢t = 0 is the time of zero crossing of the fundamental RF voltage
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Longitudinal dynamics )

« We take a snapshot of the beam at the RF cavity

« ¢t = 0 is the time of zero crossing of the fundamental RF voltage
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Longitudinal dynamics - drift o

« The bending fields B and the reference momentum pq fix the de-
sign orbit C|

« Momentum deviations result in a change of the design orbit which
we express most generally in the expansion

C — Co (14 apd + a0 4+ ad® +...)
« We define the momentum compaction factor as

1 dC 1
= —— = 20010 4+ 3020% +...) = =
Codo ~ (w0 F2amd+3ad+.) =5

e%e
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Longitudinal dynamics - drift

The difference in revolution frequency can be expressed as

Expanding the two factors as

L= f0), and =g
0

we obtain the phase slippage factor as

Aw  f(0) .
w g P
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Longitudinal dynamics - drift o

The difference in revolution frequency can be expressed as

Aw _ BC
wo  Po C
Expanding the two factors as
I5; C
— = ) ; and — = 0
5 f(0) Cr g(9)

Convince yourself that:

£(8) = L

 /B282+B30+1
NGD
wo  (g(0)
We already know the expansion for this term:

(1+ agd + 16?2 +...)

we obtain the phase slippage factor as
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Longitudinal dynamics - drift o

» The slippage factor is really a function of the transverse optics, the
reference momentum and the deviation from the latter (¢, po, 9).
It can be expanded as

Aw

and expressed to lowest order in 0 as

* The lowest order momentum compaction factor can be derived to

1 (s)
g = dS See Hannes' lectures
Co P
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Longitudinal dynamics - drift ~ **
With the understanding of phase slippage we can now write down the
first part (drift) of the equations of motion in the longitudinal phase space
(2, 0)

z = —npBco

This synchrotron drift would be generated by a Hamiltonian
1 2
H = —577505

A consequency of this is the occurrence of transition crossing when the
slippage factor switches sign.
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Longitudinal dynamics - drift o

With the understanding of phase slippage we can now write down the
first part (drift) of the equations of motion in the longitudinal phase space

(2, 0) velocity can be positive or negative

5 — ) depending on whether particles are
o below or above transition

This synchrotron drift would be generated by a Hamiltonian
1 2
H = —577505

A consequency of this is the occurrence of transition crossing when the
slippage factor switches sign.
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Longitudinal dynamics — tran&‘,ltlon“*h |

* The phase slippage is a result of the competing of the two

effects:
. - -y ~ o
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Longitudinal dynamics — transﬂmn“h |

* The phase slippage is a result of the competing of the two
effects:

- Gain in velocity: i.e. high momentum particles
move faster

CE/RW
\
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Longitudinal dynamics — tran&‘,ltlon“*h |

* The phase slippage is a result of the competing of the two
effects:

- Gain in velocity: i.e. high momentum particles
move faster

- Gain in path length: i.e. high momentum R SN e
. 7 ~
particles travel on a longer path | / *y K
\ \
T V/
/ 1)
/7 \ ;)
v Design 7 )}
S N\ : 7’
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Longitudinal dynamics — transition

LD

* The phase slippage is a result of the competing of the two
effects:

CE/RW
\

N g

Gain in velocity: i.e. high momentum particles
move faster

. . . . =T \
Gain in path length: i.e. high momentum _a SN e
. 7 D
particles travel on a longer path | / v
\ \
.- . . /
Below transition, the first effect wins: )| 1
high momentum particles will advance (\‘\\ Design ) ,‘,
compared to low momentum particles Sa_ oot g
.. . \ = == -7 /
Above transition, the second effect dominates: ST T
high momentum particles will fall back Off-momentum

: orbit
compared to low momentum particles
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Longitudinal dynamics — tran&‘,ltlon“*h |

* The synchronous particle has zero
momentum offset and always takes TO
to go around, i.e. is always observed
with z=0.

 Particles with positive z arrive earlier at
the observer (negative delay t), those
with negative z arrive later (positive
delay t)

* Bunched beams: below transition
particles are focused back by
deceleration. Opposite above transition.

» Coasting beams: below transition
particles with positive momentum offset
shear toward positive z (absence of
focusing). Opposite above transition

0
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Longitudinal dynamics — tran&‘,ltlon“*h |

* The synchronous particle has zero
momentum offset and always takes TO
to go around, i.e. is always observed
with z=0.

 Particles with positive z arrive earlier at
the observer (negative delay t), those
with negative z arrive later (positive
delay t)

« Bunched beams: below transition
particles are focused back by
deceleration. Opposite above transition.

» Coasting beams: below transition
particles with positive momentum offset
shear toward positive z (absence of
focusing). Opposite above transition
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The role of the RF - kick

The role of the RF can be decomposed in two main functions:

Acceleration: to ensure that the beam remains on the design orbit. For
this, it needs to compensate a change in the bending fields by
accelerating the beam adequately to keep the orbit fixed

_ Apo
P eAB

Focussing: to ensure that the beam is longitudinally focused In
bunches. For this, particles lagging behind should experience
an additional acceleration whereas particles ahead should experi-
ence a reduced acceleration (and inverse when above transition).

0
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U
The role of the RF - kick

The role of the RF can be decomposed in two main functions:

Acceleration: to ensure that the beam remains on the design orbit. For
this, it needs to compensate a change in the bending fields by
accelerating the beam adequately to keep the orbit fixed

A B N — O\,
Y,
—C

Focussing: to ensure that the beam is longitudinally focused In
bunches. For this, particles lagging behind should experience
an additional acceleration whereas particles ahead should experi-
ence a reduced acceleration (and inverse when above transition).
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U
The role of the RF - kick

The role of the RF can be decomposed in two main functions:

Acceleration: to ensure that the beam remains on the design orbit. For
this, it needs to compensate a change in the bending fields by
accelerating the beam adequately to keep the orbit fixed

A B N — O\,
Y,
—C

Focussing: to ensure that the beam is longitudinally focused In
bunches. For this, particles lagging behind should experience
an additional acceleration whereas particles ahead should experi-
ence a reduced acceleration (and inverse when above transition).
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Longitudinal dynamics — transition

» We take a snapshot of the beam at the RF cavity

« ¢t = 0 is the time of zero crossing of the fundamental RF voltage

8 ‘ ‘ ‘ — The RF needs to compensate the
natural dilution for focusing:

above transition, ahead particles
should gain more energy — stable
phase at 0 deg

E [eV/m/p0]
o

Curvature radius

-1.5 ~1.0 —-0.5 0.0 0.5 1.0 1.5
z[m]



Longitudinal dynamics — transition

» We take a snapshot of the beam at the RF cavity

« ¢t = 0 is the time of zero crossing of the fundamental RF voltage

8 ‘ ‘ ‘ — The RF needs to compensate the
natural dilution for focusing:

below transition, behind particles
% [ should gain more energy — stable
%| phase at 180 deg
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The role of the RF - kick

Acceleration and focusing can be formalised. The average energy gain
per unit length from the RF field can be written as

h
Ez%Siﬂ(EZ—I—gp)

Acceleration requires that part of the RF field is used to provide an en-
ergy gain such that per revolution

AFE

Po = P1=P0 T —&5—
be

The remaining field is used for focusing and give rise to the synchroton

motion - , N
€ 0 . Z
o) 01 = 0 — —
oo O+p00 Sm<R+¢) poSBc
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The role of the RF - kick

This synchrotron kick would be generated by a Hamiltonian

H = v COS %—I— —I—ﬁz
= 2mpoh R 7)) 7T pC
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The synchrotron Hamiltonian 5

With the considerations made in the previous slides we now postulate
the synchrotron Hamilonian as

1 5 e

with the most general voltage provided for synchrotron motion by the RF

Vi(z) = ‘;LR Ccos (f + 90@) + — 2

1
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The synchrotron Hamiltonian "'

Often it is more convenient to set the zero level of the Hamiltonian to a
more meaningful point z, I.e.

H(z,0) = —%775052

+ v COS % — COS % + @_hzc &
2mpoh R R R R ) eV
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The synchrotron Hamiltonian 5

H(z,0) = —%776052

+ v COS E — COS % + @ — hze &
2mpoh R R R R ) eV
The equations of motion remain invariant as

/1 o\ (s
o, o) e (0 (%) ),

J is the symplectic structure matrix

|
<
<
=
|

|
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The synchrotron Hamiltonian '('

H(z,0) = —%776052

+ v COS E — COS % + @ — hze &
2mpoh R R R R ) eV
The equations of motion remain invariant as

/1 o\ (s
o, o) e (o (%) ),

J is the symplectic structure matrix
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The synchrotron Hamiltonian

H(z,0) = —%775652

+ v COS % — COS % + %_hzc @
21poh R R R R ) eV

Acceleration by A E with a single RF gives rise to the synchroneous po-
sition (synchroneous phase) with respect to the reference position (zero
crossing of the fundamental RF), for which there is no synchrotron mo-

tion
hz 5 s AE
— ¢, = arcsin | ——
R eV
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ot

The synchrotron Hamiltonian

H(z,0) = —%775652

+ v COS % — COS % + %_hzc @
21poh R R R R ) eV

Acceleration by A E with a single RF gives rise to the synchroneous po-
sition (synchroneous phase) with respect to the reference position (zero
crossing of the fundamental RF), for which there is no synchrotron mo-

tion
hz 5 s AE
— ¢, = arcsin | ——
R eV

Let’s now take a look at some examples of different RF buckets.
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Single stationary bucket
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0.004

0.002 |
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Single stationary bucket
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Single stationary bucket &

8
Lg — 0 Gt At i N L S BRI e T L e L
__TR S e e
AT | SONE L R SRR
TR TR ShEdlE Ee S b e ey G e e B e
z’l" = — — ZS = — e . R L e
h h FHERSELE. T IR RS N TN (RO s
-8
0.5
0.0
_-os| For more general cases, we need to solve
9 -1.0
1 eV hz\ S 'E(Z):Oiz 2z
H(z,0)=—= 52 — 1 sy <~l/r
(z,9) 27750 + Smpoh (COS(R) + )
max 2E h
w55 Eoll * 5separatrix(z) : H(Zv(s) =0
16 6VB§E0
A= h \/277‘*}(2)|77|h ¢ 5max — 5separa,trix(zs)
Zr
~0.004 « A= 2p le 5separatrix(z) dz
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R . [(AFE | N PR IS SET ENPE RS e e R
Zg = —— arcsin K e

Single accelerating bucket

h eV

2] : COS % —%Sin hzs
b R R R

T e o A s s
= — 7 |sin| — | — — _ ' ' L L ' -
R R R g % % 5 : % ™
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Single accelerating bucket &

R . AE 3 -,_,_,_,-,-ré-,-,-,- TR R EET RS A I L W PR AW R RE i, e T TN S
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Multiple accelerating bucket

4 ! !

h;
Zsy Zp ZeVi sin (% + gpi) = AF

)

eViR h;z
Zl:zz-: h <COS( R +907;)
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Multiple accelerating bucket <"

)

o N
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Small amplitude approximation o

For particles close to the synchroneous phase we may linearize the potential:

H(z,0) = —gnbed’

+ v COS @ + cos hzs — %—I—hzs—w sin hzs
2mpoh R R R R R

1 5 eV h 5
~ —5775(:5 E— cos(ps) 2

0
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Small amplitude approximation o

For particles close to the synchroneous phase we may linearize the potential:

H(z,0) = —gnbed’

+ v COS @ + cos hzs — %4—}%8—77 sin hzs
2mpoh R R R R R

1 5 eVh 5
~ —5775(:5 E— cos(ps) 2

This allows the definition of the (small amplitude) synchrotron tune

2
P Vnh
2+ <%> z=0, w? — ngogg cos(ps)

ws eVnh
05 = 5 = | o
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Small amplitude approximation ¥

For particles close to the synchroneous phase we may linearize the potential:

H(z,0) = —gnbed’

+ v COS @ + cos hzs — @4—}%8—77 sin hzs
2mpoh R R R R R

1 5 eV h 5
~ —5775(:5 E— cos(ps) 2

This allows the definition of the (small amplitude) synchrotron tune

2
o, eVnhBc
/1 S 2
z" + =0, wi= COS
(50) T8 2mpoR? (95)
Rediscover the stability criterion

¢ = 7 below transition (n < 0)
Wg 6V77h ¢ = 0 above transition (n > 0)
Qs = — = 4 5 cos( s
wo 2 Fo 5
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Matching .
« For an ensemble of particles it is important to be matched to prevent

flamentation, i.e. emittance increase.

« We will learn that, given a single particle probability density function ) to
describe the particle ensemble, the ensemble is matched if ¢ = (H ).

 Given the single particle Hamiltonian

eV h
47Tp()R2

H(z,0) = —%nﬁc 6% — cos(¢ps) 22,

let’s assume a Gaussian PDF as
H nBc §? eV hcos(¢s) 2°
H — | = — _ .
Y(H) o exp (H()) exp ( 2T, ) exp ( yE— Ty
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Matching i
It follows that

Hy

nBc

5 2mpoR*Hy

> eVhcos(p,)

. 2
o5 =

0O

and, hence, with Q2 = % cos(¢,) the matching condition:
nik
0, = @05 = 6,05 .

Just as in the transvere plane, a Gaussian beam with the correct ratio o, /o
compared to the external focusing given by 1 /3. will not perform any quadrupo-
lar oscillations or suffer emittance increase due to filamentation.

&) | &~
January 2015 USPAS - longitudinal dynamics 42/48

N S
YEARS /ANS CERN




. (1

Matching .

The (normalized) longitudinal emittance is typically defined as the 20-area of
the rms emittance

e = dm \/(22)(dp?) — (zdp)? [eVs].
For a bi-Gaussian distribution, this simplifies to
eg") = ATo 04

and corresponds to the 2o0-area occupied by the beam in phase space.
Hence, for a matched bi-Gaussian distribution, we can finally write

() _ g 95, 2
82 7T77Rp()0'z
nk
— 47 o
Qspo w

‘f N\
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Matching I""b

The (normalized) longitudinal emittance is typically defined as the 20-area of
the rms emittal 8000

4000
0
0.006

For a bi-Gauss
0.004 |

0.002 ¢

« 0.000
and correspon{ —o.002 |
Hence, foram| _; 004 |

space.
ite

—0.006 |

—100 =50 0 50 100
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Coupling to the transverse plane i

Quantities such as the chromaticity couple the longitudinal and the transverse
plane. Computing macroscopic quantities out of multiparticle distributions, thus,
becomes challenging, even without introducing collective effects. For example,
the mean horizontal centroid position can be expressed as

(u)(t) = /up(u, u'y2,0,t) dudu’ dz dd
— /u(a,a’, 2,0,t) p(t, 0, 2,0) dadi’ dz do,
where, now, the single particle time evolution is given as

w(t, i, t) = i cos (wu + Awy (S, 5(t)))+5uﬂ’ Sin(wu + Awy (S, (5(15))) .
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. [0
Coupling to the transverse plane i

Quantities such as the chromaticity couple the longitudinal and the transverse
plane. Computing macroscopic quantities out of multiparticle distributions, thus,
becomes challenging, even without introducing collective effects. For example,
the mean horizontal centroid position can be expressed as

(u)(t) = /up(u,u’,z,5, t)dudu’ dz dd
— /u(a,a’,z,s,t) p(t, 0, 2,0)dtda’ dz dod,

where, now, the single particle time evolution is given as

w(t, i, t) = i cos (wu + Awu(Ju,))+6uf&’ sin (wu + Awu(Ju,)> .

Modulation of the transverse frequency
by the synchrotron frequency

CE/RW
\

N g

0

January 2015 USPAS - longitudinal dynamics 46/48

YEARS /ANS CERN



Summary

» Reference coordinates in the longitudinal plane

* The drift equation of motion
* Transition

* The kick equation of motion

* The synchrotron Hamiltonian
« Small amplitude approximation
* Multi-particle peculiarities
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THE END
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