

U.S. Particle Accelerator School

Education in Beam Physics and Accelerator Technology

Collective effects in Beam Dynamics

Giovanni Rumolo, Hannes Bartosik and Kevin Li

USPAS, one-week course, 19-24 January, 2015 http://uspas.fnal.gov/index.shtml

Outline

- 1. Introductory concepts
 - Collective effects
 - Transverse single particle dynamics including systems of many non-interacting particles
 - Longitudinal single particle dynamics including systems of many non-interacting particles
- 2. Space charge
 - Direct space charge (transverse)
 - Indirect space charge (transverse)
 - Longitudinal space charge

Outline

- 3. Wake fields and impedance
 - Wake function and wake potential
 - Definition of beam coupling impedance
 - Examples resonators and resistive wall
 - Energy loss
 - Impedance model of a machine

4. Instabilities – few-particle model

- Equations of motion
- Longitudinal plane: Robinson instability
- Transverse plane: rigid bunch instability, strong head-tail instability, head-tail instability

Reminder

1/21/15

USPAS lectures: Wakes & Impedances 6

Reminder

- The single particle (or macroparticle) in the witness slice $\lambda(z)dz$ feels the force from
 - RF
 - The wake left from 'earlier' particles
 - The bunch own space charge
- The wake contribution can extend to several turns

$$\begin{aligned} \frac{dz}{dt} &= -\eta c \delta \\ \frac{d\delta}{dt} &= \frac{eV_{rf}(z)}{2\pi R p_0} - \frac{e^2}{2\pi R p_0} \sum_{k=0}^{\infty} \int_z^{\infty} \lambda(z' + 2\pi k R) W_{||}(z - z' - 2\pi k R) dz' - \frac{e^2 g \lambda'(z)}{2\pi \epsilon_0 \gamma^2 p_0} \end{aligned}$$

$$\frac{dz}{dt} = -\eta c\delta$$

$$\frac{d\delta}{dt} = \frac{eV_{rf}(z)}{2\pi Rp_0} - \frac{e^2}{2\pi Rp_0} \sum_{k=0}^{\infty} \int_z^{\infty} \lambda(z' + 2\pi kR) W_{||}(z - z' - 2\pi kR) dz' - \frac{e^2 g \lambda'(z)}{2\pi \epsilon_0 \gamma^2 p_0}$$

$$H = -\frac{1}{2}\eta c\delta^{2} + \frac{eU(z)}{2\pi Rp_{0}} + \frac{e^{2}}{2\pi Rp_{0}} \int_{z_{0}}^{z} dz'' \sum_{k=0}^{\infty} \int_{z}^{\infty} \lambda(z' + 2\pi kR) W_{||}(z - z' - 2\pi kR) dz'$$

$$\psi_0(H) \text{ stationary solution of } \frac{\partial \psi}{\partial t} + \dot{z} \frac{\partial \psi}{\partial z} + \dot{\delta} \frac{\partial \psi}{\partial \delta} = 0$$

$$\psi_0(H) + \psi_1(z, \delta, t) \text{ also solution of } \frac{\partial \psi}{\partial t} + \dot{z} \frac{\partial \psi}{\partial z} + \dot{\delta} \frac{\partial \psi}{\partial \delta} = 0 \text{ with stable } \psi_1(z, \delta, t)$$

Regime of **potential well distortion** (i.e. perturbations to equilibrium solution are damped)

- Stable phase shift
- Synchrotron frequency shift
- Different matching (\rightarrow bunch lengthening for lepton machines)

 $d\gamma$

Proportional to

intensity

$$\begin{aligned} \frac{dz}{dt} &= -\eta c\delta \\ \frac{d\delta}{dt} &= \frac{eV_{rf}(z)}{2\pi Rp_0} - \frac{e^2}{2\pi Rp_0} \sum_{k=0}^{\infty} \int_{z}^{\infty} \lambda(z' + 2\pi kR) W_{||}(z - z' - 2\pi kR) dz' - \frac{e^2 g\lambda'(z)}{2\pi \epsilon_0 \gamma^2 p_0} \\ H &= -\frac{1}{2} \eta c\delta^2 + \frac{eU(z)}{2\pi Rp_0} + \frac{e^2}{2\pi Rp_0} \int_{z_0}^{z} dz'' \sum_{k=0}^{\infty} \int_{z}^{\infty} \lambda(z' + \gamma e^{-1}) dz' - (z - 2\pi kR) dz' \\ \psi_0(H) \text{ stationary solution of } \frac{\partial \psi}{\partial z} = 0 \\ \psi_0(H) + \psi_1(z, \delta - \chi e^{-1}) \int_{z_0}^{z} e^{-1} dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} dz'' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} dz'' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} dz'' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{2\pi Rp_0} \int_{z_0}^{z} \lambda(z' + \gamma e^{-1}) dz' + \frac{i}{$$

Regime of **long Long Long**

- Dipole mode instabilities
- Coupled bunch instabilities
- Microwave instability (longitudinal mode coupling)

 $z_{n+1} = z_n - 2\pi R\eta \delta_n$

$$\delta_{n+1} = \delta_n + \frac{eV_{rf}(z_{n+1})}{cp_0} - \frac{e^2}{cp_0} \int_{-\infty}^{\infty} \lambda_{n+1}(z') W_{||}(z_{n+1} - z') dz' - \frac{e^2 gRZ_0 \lambda'_{n+1}(z_{n+1})}{\gamma^2 p_0}$$

1/21/15

We assume that interaction of bunch with (RF + wake + space charge) lumped at one or more locations.

This is usually true for RF, it is a one-kick approximation for space charge and wake

Wake from impedance model (can be divided by number of points, if more than one)

- Slicing needs to be fine enough as to sample the wake function
- Slice *m* included because of *energy loss*
- Discontinuity in z=0 make slicing requirement more stringent (need check of convergence of energy loss value)

1/21/15

For multi-turn wakes (i.e. preserving memory of the wake over \mathbf{n}_{t} turns)

$$\sum_{k=0}^{n_t} \sum_{h=0}^{N_{sl}} \lambda_{n+1-k} (h\Delta z_{n+1-k}) W_{||} [(m-h)\Delta z_{n+1-k} - 2\pi kR - \langle z \rangle_{n+1-k} + \langle z \rangle_{n+1}]$$

1/21/15

- Too fine *slicing* (i.e. too low number of macroparticles per slice) can be the origin of noise problems
 - → If there are no other constraints in the simulation, slicing can be chosen such as to have a smooth derivative
 - → Smoothing can be applied to both distribution before differentiating and to derivative
- Alternatively, space charge force can be directly calculated from E_s with **Poisson solver** (3 or 2.5D)

$$H = \frac{1}{2} \frac{Q_{x0}}{R} \left[\left(\frac{Q_{x0}}{R} \right) x^2 + \left(\frac{R}{Q_{x0}} \right) x'^2 \right] + \frac{eU(z)}{2\pi R E_0} - \frac{\eta}{2} \delta^2 + \frac{e^2}{2\pi R E_0} \left[x \int_z^\infty \lambda(z') \langle x \rangle(z') W_x(z-z') dz' + x^2 \int_z^\infty \lambda(z') W_{Qx}(z-z') dz' \right]$$

Change of variables in the transverse phase plane x, x' $\boldsymbol{\rightarrow}$ J_x, θ_x

$$\begin{cases} x = \sqrt{2J_x \frac{R}{Q_{x0}} \cos \theta_x} \\ x' = \sqrt{2J_x \frac{Q_{x0}}{R}} \sin \theta_x \end{cases}$$

 $\psi_0(H)$ stationary solution of $\frac{\partial \psi}{\partial t} + z' \frac{\partial \psi}{\partial z} + \delta' \frac{\partial \psi}{\partial \delta} + J'_x \frac{\partial \psi}{\partial J_x} + \theta'_x \frac{\partial \psi}{\partial \theta_x} = 0$ $\psi_0(H) + \psi_1(J_x, \theta_x, z, \delta, t)$ also solution with stable ψ_1

Beam transversely stable (i.e. perturbations to equilibrium solution are damped)

- Head-tail modes
- Coherent betatron tune shift with intensity

 $\psi_0(H)$ stationary solution of $\frac{\partial \psi}{\partial t} + z' \frac{\partial \psi}{\partial z} + \delta' \frac{\partial \psi}{\partial \delta} + J'_x \frac{\partial \psi}{\partial L_x} + \theta'_x \frac{\partial \psi}{\partial \theta_x} = 0$ $\psi_0(H) + \psi_1(J_x, \theta_x, z, \delta, t)$ also solution with growing ψ_1

 Beam transversely unstable (i.e. perturbations to equation of the off attemption off attemption off attemption off attemption of the off attemption of the off attemption off attemption off attemption off attemption of the off att linearised longitudinal motion and only dipole wake fields. E.g.

- MOSES [Y. Chin, CERN/SPS/85-2 & CERN/LEP-TH/88-05] •
- NHTVS [A. Burov, Phys. Rev. ST AB 17, 021007 (2014)] •
- DELPHI [N. Mounet, HSC Meeting, 09/04/2014] •

$$\begin{pmatrix} x_{n+1} \\ x'_{n+1} \end{pmatrix} = \underline{\mathcal{M}}(\delta, J_x) \cdot \begin{pmatrix} x_n \\ x'_n - \frac{e^2}{2\pi R E_0} \int_{-\infty}^{\infty} \lambda_n(z') \left[W_x(z-z') \langle x \rangle_n(z') + W_{Qx}(z-z') x_n \right] dz' \end{pmatrix}$$
$$z_{n+1} = z_n - 2\pi R \eta \delta_n$$

$$\delta_{n+1} = \delta_n + \frac{eV_{rf}(z_{n+1})}{E_0}$$

Assuming interaction of bunch with wake lumped at one or more locations + 1-turn (or sector) map transport

$$\begin{pmatrix} x_{n+1} \\ x'_{n+1} \end{pmatrix} = \underline{\mathcal{M}}(\delta, J_x) \cdot \begin{pmatrix} x'_n - \frac{e^2}{2\pi R E_0} \int_{-\infty}^{\infty} \lambda_n(z') \left[W_x(z-z') \langle x \rangle_n(z') + W_{Qx}(z-z') x_n \right] dz' \end{pmatrix}$$

$$\delta_{n+1} = \delta_n + \frac{eV_{rf}(z_{n+1})}{E_0}$$

 $z_{n+1} = z_n - 2\pi R\eta \delta_n$

- Usually, the 1-turn transport matrix is built from the average beta function along the ring $<\beta_x>=R/Q_{x0}$ and the tune $Q_x(\delta,J_x)$
- The wakes W_x and W_{Qx} are those from the impedance model (divided by the number of points, if more than one)

$$\sum_{h=m+1} \lambda_n (h\Delta z_n) \left(W_x [(m-h)\Delta z_n] \langle x \rangle_n (h\Delta z_n) + W_{Qx} [(m-h)\Delta z_n] x_n \right)$$

- N_{sl} is the number of slices in which a bunch is subdivided
- m is the slice index where z_{n+1} is located
- Δz_{n+1} is the slice width at step n+1
- Slicing needs to be fine enough as to sample the wake function
- If *indirect space charge included*, sum runs from 0 to $N_{s/}$ and peak on source slice needs to be resolved correctly

One-particle models

□ Longitudinal plane → Robinson instability □ Transverse plane → Rigid dipole instability

One-particle models

□ Longitudinal plane → Robinson instability

 \Box Transverse plane \rightarrow Rigid dipole instability

To illustrate the Robinson instability we will use some simplifications:

- ⇒ The bunch is point-like and feels an external linear force (i.e. it would execute linear synchrotron oscillations in absence of the wake forces)
- ⇒ The bunch additionally feels the effect of a multi-turn wake

- To illustrate the Robinson instability we will use some simplifications:
 - ⇒ The bunch is point-like and feels an external linear force (i.e. it would execute linear synchrotron oscillations in absence of the wake forces)
 - ⇒ The bunch additionally feels the effect of a multi-turn wake

- To illustrate the Robinson instability we will use some simplifications:
 - ⇒ The bunch is point-like and feels an external linear force (i.e. it would execute linear synchrotron oscillations in absence of the wake forces)
 - ⇒ The bunch additionally feels the effect of a multi-turn wake

To illustrate the Robinson instability we will use some simplifications:

⇒ The bunch is point-like and feels an external linear force (i.e. it would execute linear synchrotron oscillations in absence of the wake forces)

⇒ The bunch additionally feels the effect of a multi-turn wake

$$\frac{d^{2}z}{dt^{2}} + \frac{\eta e V_{\rm rf}(z)}{m_{0}\gamma C} = \frac{\eta e^{2}}{m_{0}\gamma C} \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} \lambda(z'+kC) W_{||}(z-z'-kC) dz'$$
External RF Wake fields
$$\frac{d^{2}z}{dt^{2}} + \omega_{s}^{2}z = \frac{Ne^{2}\eta}{Cm_{0}\gamma} \sum_{k=-\infty}^{\infty} W_{||} [z(t) - z(t-kT_{0}) - kC]$$

$$\overbrace{}^{\text{VENEXALS CEN}} 1/21/15 \qquad \text{USPAS lectures: Wakes & Impedances} \qquad 34$$

To illustrate the Robinson instability we will use some simplifications:

⇒ The bunch is point-like and feels an external linear force (i.e. it would execute linear synchrotron oscillations in absence of the wake forces)

⇒ The bunch additionally feels the effect of a multi-turn wake

$$\frac{d^2 z}{dt^2} + \omega_s^2 z = \frac{N e^2 \eta}{C m_0 \gamma} \sum_{k=-\infty}^{\infty} W_{\parallel} \left[z(t) - z(t - kT_0) - kC \right]$$

We assume that the wake can be linearized on the scale of the oscillation amplitude

$$W_{\parallel} [z(t) - z(t - kT_0) - kC] \approx W_{\parallel}(kC) + W'_{\parallel}(kC) \cdot [z(t) - z(t - kT_0)]$$

$$W_{\parallel} [z(t) - z(t - kT_0) - kC] \approx W_{\parallel}(kC) + W_{\parallel}(kC) \cdot [z(t) - z(t - kT_0)]$$

- ⇒ The term $\Sigma W_{\parallel}(kC)$ only contributes to a constant term in the solution of the equation of motion, i.e. the synchrotron oscillation will be executed around a certain z_0 and not around 0. This term represents the stable phase shift that compensates for the energy loss
- ⇒ The dynamic term proportional to $z(t)-z(t-kT_0) \approx kT_0 dz/dt$ will introduce a "friction" term in the equation of the oscillator, which can lead to instability!

$$z(t) \propto \exp\left(-i\Omega t\right)$$

$$\Omega^{2} - \omega_{s}^{2} = -\frac{Ne^{2}\eta}{Cm_{0}\gamma} \sum_{k=-\infty}^{\infty} \left[1 - \exp\left(-ik\Omega T_{0}\right)\right] \cdot W_{\parallel}'(kC)$$
$$i \cdot \frac{1}{C} \sum_{p=-\infty}^{\infty} \left[p\omega_{0}Z_{\parallel}(p\omega_{0}) - (p\omega_{0} + \Omega)Z_{\parallel}(p\omega_{0} + \Omega)\right]$$

⇒ We assume a small deviation from the synchrotron tune
 ⇒ Re(Ω - ω_s) → Synchrotron tune shift
 ⇒ Im(Ω - ω_s) → Growth/damping rate, only depends on the dynamic term, if it is positive there is an instability!

$$\Omega^{2} - \omega_{s}^{2} \approx 2\omega_{s} (\Omega - \omega_{s})$$

$$\Delta \omega_{s} = \operatorname{Re}(\Omega - \omega_{s}) = \left(\frac{e^{2}}{m_{0}c^{2}}\right) \frac{N\eta}{2\gamma T_{0}^{2}\omega_{s}} \times$$

$$\times \sum_{p=-\infty}^{\infty} \left[p\omega_{0}\operatorname{Im} Z_{\parallel}(p\omega_{0}) - (p\omega_{0} + \omega_{s})\operatorname{Im} Z_{\parallel}(p\omega_{0} + \omega_{s})\right]$$

$$\tau^{-1} = \operatorname{Im}(\Omega - \omega_s) = \left(\frac{e^2}{m_0 c^2}\right) \frac{N\eta}{2\gamma T_0^2 \omega_s} \sum_{p=-\infty}^{\infty} (p\omega_0 + \omega_s) \operatorname{Re} Z_{\parallel}(p\omega_0 + \omega_s)$$

$$\tau^{-1} = \operatorname{Im}(\Omega - \omega_s) = \left(\frac{e^2}{m_0 c^2}\right) \frac{N\eta}{2\gamma T_0^2 \omega_s} \sum_{p=-\infty}^{\infty} (p\omega_0 + \omega_s) \operatorname{Re} Z_{\parallel}(p\omega_0 + \omega_s)$$

- ⇒ We assume the impedance to be peaked at a frequency ω_r close to $h\omega_0 >> \omega_s$ (e.g. RF cavity fundamental mode or HOM)
- ⇒ Only two dominant terms are left in the summation at the RHS of the equation for the growth rate
- ⇒ Stability requires that η and Δ [Re $Z_{\parallel}(h\omega_0)$] have different signs

$$\tau^{-1} = \left(\frac{e^2}{m_0 c^2}\right) \frac{N\eta h\omega_0}{2\gamma T_0^2 \omega_s} \begin{bmatrix} \operatorname{Re} Z_{\parallel}(h\omega_0 + \omega_s) - \operatorname{Re} Z_{\parallel}(h\omega_0 - \omega_s) \end{bmatrix}$$

$$\overset{0.2}{\longrightarrow} \begin{bmatrix} \operatorname{Re} Z_{\parallel}(h\omega_0) \end{bmatrix} \begin{bmatrix} \omega_r \approx h\omega_0 \\ 0.2 \\ 0.0 \\ 0.2 \end{bmatrix}$$
Stability criterion $\rightarrow \eta \cdot 0\Delta \begin{bmatrix} \operatorname{Re} Z_{\parallel}(h\omega_0) \end{bmatrix} < 0$

$$\overset{0}{\longrightarrow} 2 \xrightarrow{4} \xrightarrow{6} \xrightarrow{8} 10$$

39

Figure 4.4. Illustration of the Robinson stability criterion. The rf fundamental mode is detuned so that ω_R is (a) slightly below $h\omega_0$ and (b) slightly above $h\omega_0$. (a) is Robinson damped above transition and antidamped below transition. (b) is antidamped above transition and damped below transition.

	ա _r < hա ₀	_ω _r > h _{ω0}
Above transition (η >0)	stable	unstable
Below transition (η <0)	unstable	stable
	USPAS let	ctures: Wakes & Impedances

$$\tau^{-1} = \operatorname{Im}(\Omega - \omega_s) = \left(\frac{e^2}{m_0 c^2}\right) \frac{N\eta}{2\gamma T_0^2 \omega_s} \sum_{p=-\infty}^{\infty} (p\omega_0 + \omega_s) \operatorname{Re} Z_{\parallel}(p\omega_0 + \omega_s)$$

- ⇒ Other types of impedances can also cause instabilities through the Robinson mechanism
- ⇒ However, a smooth broad-band impedance with no narrow structures on the ω_0 scale cannot give rise to an instability
 - ✓ Physically, this is clear, because the absence of structure on ω_0 scale in the spectrum implies that the wake has fully decayed in one turn time and the driving term in the equation of motion also vanishes

$$\sum_{p=-\infty}^{\infty} (p\omega_0 + \omega_s) \operatorname{Re} Z_{\parallel}(p\omega_0 + \omega_s) \to \frac{1}{\omega_0} \int_{-\infty}^{\infty} \omega \operatorname{Re} Z_{\parallel}(\omega) d\omega \to 0$$

One-particle models

□ Longitudinal plane \rightarrow Robinson instability □ Transverse plane \rightarrow Rigid dipole instability

- To illustrate the rigid bunch instability we will use some simplifications:
 ⇒ The bunch is point-like and feels an external linear force (i.e. it would execute linear betatron oscillations in absence of the wake forces)
 - ⇒ Longitudinal motion is neglected
 - \Rightarrow Smooth approximation \rightarrow constant focusing + distributed wake

- In a similar fashion as was done for the Robinson instability in the longitudinal plane we want to
 - ⇒ Calculate the betatron tune shift due to the wake
 - \Rightarrow Derive possible conditions for the excitation of an unstable motion

- To illustrate the rigid bunch instability we will use some simplifications:
 - ⇒ The bunch is point-like and feels an external linear force (i.e. it would execute linear betatron oscillations in absence of the wake forces)
 - \Rightarrow Longitudinal motion is neglected
 - \Rightarrow Smooth approximation \rightarrow constant focusing + distributed wake

$$\frac{d^2y}{ds^2} + \left(\frac{\omega_\beta}{c}\right)^2 y = -\left(\frac{e^2}{m_0c^2}\right)\frac{N}{\gamma C}\sum_{k=-\infty}^{\infty}y(s-kC)W_y(kC)$$

⇒ We assume a small deviation from the betatron tune ⇒ Re($\Omega - \omega_{\beta}$) → Betatron tune shift ⇒ Im($\Omega - \omega_{\beta}$) → Growth/damping rate, if it is positive there is an instability!

$$\Omega^{2} - \omega_{\beta}^{2} \approx 2\omega_{\beta} \cdot (\Omega - \omega_{\beta})$$

$$\frac{1}{4\pi} \left[\beta_{y} \frac{eI_{b} \text{Im}(Z_{y}^{\text{eff}})}{E} \right] = \frac{1}{4\pi} \oint \beta_{y}(s) \Delta k(s) ds$$

$$\frac{\text{Re}\left(\Omega - \omega_{\beta}\right)}{\omega_{0}} = \Delta \nu_{y} \approx \frac{Ne^{2}\beta_{y}}{4\pi m_{0}\gamma cC} \sum_{p=-\infty}^{\infty} \text{Im}\left[Z_{y}(p\omega_{0} + \omega_{\beta})\right]$$

$$\operatorname{Im}\left(\Omega-\omega_{\beta}\right)=\tau_{y}^{-1}\approx-\frac{Ne^{2}\beta_{y}}{2m_{0}\gamma C^{2}}\sum_{p=-\infty}^{\infty}\operatorname{Re}\left[Z_{y}(p\omega_{0}+\omega_{\beta})\right]$$

1/21/15

Im
$$(\Omega - \omega_{\beta}) = \tau_y^{-1} \approx -\frac{Ne^2\beta_y}{2m_0\gamma C^2} \sum_{p=-\infty}^{\infty} \operatorname{Re}\left[Z_y(p\omega_0 + \omega_{\beta})\right]$$

⇒ We assume the impedance to be peaked at a frequency ω_r close to h ω_0 (e.g. RF cavity fundamental mode or HOM)

Im
$$(\Omega - \omega_{\beta}) = \tau_y^{-1} \approx -\frac{Ne^2\beta_y}{2m_0\gamma C^2} \sum_{p=-\infty}^{\infty} \operatorname{Re}\left[Z_y(p\omega_0 + \omega_{\beta})\right]$$

$$\tau_y^{-1} \approx -\frac{Ne^2\beta_y}{2m_0\gamma C^2} \left(\operatorname{Re}\left[Z_y(h\omega_0 + \Delta_{\beta y}\omega_0) \right] - \operatorname{Re}\left[Z_y(h\omega_0 - \Delta_{\beta y}\omega_0) \right] \right)$$

	ω _r < hω ₀	_{ωr} > hω ₀
Tune above integer (Δ _{by} >0)	unstable	stable
Tune below integer (∆ _{by} <0)	stable	unstable

$$\operatorname{Im}\left(\Omega - \omega_{\beta}\right) = \tau_{y}^{-1} \approx -\frac{Ne^{2}\beta_{y}}{2m_{0}\gamma C^{2}} \sum_{p=-\infty}^{\infty} \operatorname{Re}\left[Z_{y}(p\omega_{0} + \omega_{\beta})\right]$$

- ⇒ We assume the impedance to be of resistive wall type, i.e. strongly peaked in the very low frequency range ($\rightarrow 0$)
- ⇒ Using the same definitions for the tune as before, we can easily express the only two leading terms left in the summation at the RHS of the equation for the growth rate

Two-particle models

□ Transverse plane → Strong head-tail instability □ Transverse plane → Head-tail instability

Two-particle models

□ Transverse plane \rightarrow Strong head-tail instability □ Transverse plane \rightarrow Head-tail instability

- To illustrate TMCI we will need to make use of some simplifications:

- ⇒ The bunch is represented through two particles carrying half the total bunch charge and placed in opposite phase in the longitudinal phase space
- ⇒ They both feel external linear focusing in all three directions (i.e. linear betatron focusing + linear synchrotron focusing).
- \Rightarrow Zero chromaticity (Q'_{x,y}=0)
- ⇒ Constant transverse wake left behind by the leading particle
- \Rightarrow Smooth approximation \rightarrow constant focusing + distributed wake

- We will

- ⇒ Calculate a stability condition (threshold) for the transverse motion
- \Rightarrow Have a look at the excited oscillation modes of the centroid

- To illustrate TMCI we will need to make use of some simplifications:
 - ⇒ The bunch is represented through two particles carrying half the total bunch charge and placed in opposite phase in the longitudinal phase space
 - ⇒ They both feel external linear focusing in all three directions (i.e. linear betatron focusing + linear synchrotron focusing)
 - \Rightarrow Zero chromaticity (Q'_{x,y}=0)
 - ⇒ Constant transverse wake left behind by the leading particle
 - \Rightarrow Smooth approximation \rightarrow constant focusing + distributed wake

- To illustrate TMCI we will need to make use of some simplifications:
 - ⇒ The bunch is represented through two particles carrying half the total bunch charge and placed in opposite phase in the longitudinal phase space
 - ⇒ They both feel external linear focusing in all three directions (i.e. linear betatron focusing + linear synchrotron focusing)
 - \Rightarrow Zero chromaticity (Q'_{x,y}=0)
 - ⇒ Constant transverse wake left behind by the leading particle
 - \Rightarrow Smooth approximation \rightarrow constant focusing + distributed wake

⇒ During the first half of the synchrotron motion, particle 1 is leading and executes free betatron oscillations, while particle 2 is trailing and feels the defocusing wake of particle 1

$$\begin{cases} \frac{d^2 y_1}{ds^2} + \left(\frac{\omega_\beta}{c}\right)^2 y_1 = 0 & 0 < s < \frac{\pi c}{\omega_s} \\ \frac{d^2 y_2}{ds^2} + \left(\frac{\omega_\beta}{c}\right)^2 y_2 = \left(\frac{e^2}{m_0 c^2}\right) \frac{NW_0}{2\gamma C} y_1(s) \end{cases}$$

⇒ During the first half of the synchrotron motion, particle 1 is leading and executes free betatron oscillations, while particle 2 is trailing and feels the defocusing wake of particle 1

⇒ During the second half of the synchrotron period, the situation is reversed

$$\begin{cases} \frac{d^2 y_1}{ds^2} + \left(\frac{\omega_\beta}{c}\right)^2 y_1 = \left(\frac{e^2}{m_0 c^2}\right) \frac{NW_0}{2\gamma C} y_2(s) \\ \frac{d^2 y_2}{ds^2} + \left(\frac{\omega_\beta}{c}\right)^2 y_2 = 0 \end{cases} \qquad \frac{\pi c}{\omega_s} < s < \frac{2\pi c}{\omega_s} \end{cases}$$

- ⇒ We solve with respect to the complex variables defined below during the first half of synchrotron period
- \Rightarrow y₁(s) is a free betatron oscillation
- ⇒ $y_2(s)$ is the sum of a free betatron oscillation plus a driven oscillation with $y_1(s)$ being its driving term

$$\tilde{y}_{1,2}(s) = y_{1,2}(s) + i \frac{c}{\omega_{\beta}} y'_{1,2}(s)$$

$$\tilde{y}_1(s) = \tilde{y}_1(0) \exp\left(\frac{-i\omega_\beta s}{c}\right)$$

$$\tilde{y_2}(s) = \tilde{y_2}(0) \exp\left(-\frac{i\omega_\beta s}{c}\right) + i\frac{Ne^2 W_0}{4m_0 \gamma c C \omega_\beta} \left[\frac{c}{\omega_\beta} \tilde{y}_1^*(0) \sin\left(\frac{\omega_\beta s}{c}\right) + \tilde{y}_1(0)s \exp\left(-\frac{i\omega_\beta s}{c}\right)\right]$$
Free oscillation term
Driven oscillation term

CERI

$$\begin{split} \tilde{y_1} \left(\frac{\pi c}{\omega_s}\right) &= \tilde{y_1}(0) \exp\left(-\frac{i\pi\omega_\beta}{\omega_s}\right) \\ \tilde{y_2} \left(\frac{\pi c}{\omega_s}\right) &= \tilde{y_2}(0) \exp\left(-\frac{i\pi\omega_\beta}{\omega_s}\right) + \\ &+ i\frac{Ne^2W_0}{4m_0\gamma cC\omega_\beta} \left[\frac{c}{\omega_\beta}\tilde{y}_1^*(0) \sin\left(\frac{\pi\omega_\beta}{\omega_s}\right) + \tilde{y_1}(0)\left(\frac{\pi c}{\omega_s}\right) \exp\left(-\frac{i\pi\omega_\beta}{\omega_s}\right)\right] \end{split}$$

⇒ Second term in RHS equation for y₂(s) negligible if ω_s << ω_β
 ⇒ We can now transform these equations into linear mapping across half synchrotron period

$$\begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=\pi c/\omega_s} = \exp\left(-\frac{i\pi\omega_\beta}{\omega_s}\right) \cdot \begin{pmatrix} 1 & 0 \\ i\Upsilon & 1 \end{pmatrix} \cdot \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=0}$$
$$\Upsilon = \frac{\pi N e^2 W_0}{4m_0 \gamma C \omega_\beta \omega_s}$$

- ⇒ In the second half of synchrotron period, particles 1 and 2 exchange their roles
- ⇒ We can therefore find the transfer matrix over the full synchrotron period for both particles
- \Rightarrow We can analyze the eigenvalues of the two particle system

$$\Upsilon = \frac{\pi N e^2 W_0}{4m_0 \gamma C \omega_\beta \omega_s}$$

$$\begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=2\pi c/\omega_s} = \exp\left(-\frac{i2\pi\omega_\beta}{\omega_s}\right) \cdot \begin{pmatrix} 1 & i\Upsilon \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ i\Upsilon & 1 \end{pmatrix} \cdot \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=0}$$

$$\begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=2\pi c/\omega_s} = \exp\left(-\frac{i2\pi\omega_\beta}{\omega_s}\right) \cdot \begin{pmatrix} 1-\Upsilon^2 & i\Upsilon \\ i\Upsilon & 1 \end{pmatrix} \cdot \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=0}$$

- ⇒ Since the product of the eigenvalues is 1, the only condition for stability is that they both be purely imaginary exponentials
- ⇒ From the second equation for the eigenvalues, it is clear that this is true only when $sin(\phi/2) < 1$
- \Rightarrow This translates into a condition on the beam/wake parameters

$$\lambda_1 \cdot \lambda_2 = 1 \quad \Rightarrow \quad \lambda_{1,2} = \exp(\pm i\phi)$$

$$\lambda_1 + \lambda_2 = 2 - \Upsilon^2 \quad \Rightarrow \quad \sin\left(\frac{\phi}{2}\right) = \frac{\Upsilon}{2}$$

$$\Upsilon = \frac{\pi N e^2 W_0}{4m_0 \gamma C \omega_\beta \omega_s} \le 2$$

CERI

<u>S</u>S

The evolution of the eigenstates follows:

$$\begin{pmatrix} \tilde{V}_{+n} \\ \tilde{V}_{-n} \end{pmatrix} = \exp\left(-i\frac{2\pi\omega_{\beta}}{\omega_{s}}n\right) \cdot \begin{pmatrix} \exp\left[-2i\arcsin\left(\frac{\Upsilon}{2}\right)\cdot n\right] & 0 \\ 0 & \exp\left[2i\arcsin\left(\frac{\Upsilon}{2}\right)\cdot n\right] \end{pmatrix} \begin{pmatrix} \tilde{V}_{+0} \\ \tilde{V}_{-0} \end{pmatrix}$$

The evolution of the eigenstates follows:

$$\begin{pmatrix} \tilde{V}_{+n} \\ \tilde{V}_{-n} \end{pmatrix} = \exp\left(-i\frac{2\pi\omega_{\beta}}{\omega_{s}}n\right) \cdot \begin{pmatrix} \exp\left[-2i\arcsin\left(\frac{\Upsilon}{2}\right)\cdot n\right] & 0 \\ 0 & \exp\left[2i\arcsin\left(\frac{\Upsilon}{2}\right)\cdot n\right] \end{pmatrix} \begin{pmatrix} \tilde{V}_{+0} \\ \tilde{V}_{-0} \end{pmatrix}$$

Eigenfrequencies: $\omega_{\beta} + l\omega_s \pm \frac{\omega_s}{\pi} \arcsin \frac{\Upsilon}{2}$ They shift with increasing intensity

- \Rightarrow For a real bunch, modes exhibit a more complicated shift pattern
- ⇒ The shift of the modes can be calculated via Vlasov equation or can be found through macroparticle simulations

CERI

SPS MDs in 2013

Two-particle models

□ Transverse plane \rightarrow Strong head-tail instability □ Transverse plane \rightarrow Head-tail instability

The head-tail instability

⇒ As for the TMCI, during the first half of the synchrotron motion, particle 1 is leading and executes free betatron oscillations, while particle 2 is trailing and feels the defocusing wake of particle 1
 ⇒ During the second half of the synchrotron period, the situation is reversed

The head-tail instability

⇒ Similarly to the solution for the Strong Head Tail Instability, we obtain the transport map

$$\begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=2\pi c/\omega_s} = \begin{pmatrix} i\Upsilon & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=\pi c/\omega_s} = \begin{pmatrix} 1-\Upsilon^2 & i\Upsilon \\ i\Upsilon & 1 \end{pmatrix} \cdot \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=0}$$

$$\Upsilon = \frac{\pi N e^2 W_0}{4m_0 \gamma C \omega_\beta \omega_s} \left(1 + i \frac{4\xi_y \omega_\beta \hat{z}}{\pi c \eta} \right)$$

Complex number!

Weak beam intensity:

CERN

 $|\Upsilon| \ll 1$

 $(\omega_{\beta} \pm \omega_{s})$

+ mode is "in-phase" mode → the two particles oscillate in phase (ω_β)
- mode is "out-phase" mode → the two particles oscillate in opposition of phase

The head-tail instability

⇒ Proportional to the wake per unit length along the ring, W_0/C → a large integrated wake (impedance) gives a stronger effect

The head-tail instability

$$\tau^{-1} = \operatorname{Im}\left(\pm \Upsilon \cdot \frac{\omega_s}{2\pi}\right) = \mp \frac{e^2}{2\pi} \cdot \frac{N\xi_y \hat{z}}{p_0 \eta} \left(\frac{W_0}{C}\right)$$

Mode 0 (+)

Above transition (η >0)	damped	unstable
Below transition (η <0)	unstable	damped
Mode 1 ()		
Above transition (η >0)	unstable	damped
Below transition (η <0)	damped	unstable

The head-tail instability

- The head-tail instability is unavoidable in the two-particle model
 - Either mode 0 or mode 1 is unstable
 - Growth/damping times are in all cases identical
- Fortunately, the situation is less dramatic in reality
 - The number of modes increases with the number of particles we consider in the model (and becomes infinite in the limit of a continuous bunch)
 - The instability conditions for mode 0 remain unchanged, but all the other modes become unstable with much longer rise times when mode 0 is stable

Mode 0

EARS / ANS CERN

			$\sum_{n=0}^{\infty} \frac{1}{n} = 0$	
Above transition (η >0)	damped	unstable	$\sum_{l=-\infty} \tau_l = 0$	
Below transition (η <0)	unstable	damped		
	All modes	All modes >0		
	Above transiti	on (η>0) unstal	ole damped	
	Below transiti	on (η<0) damp	ed unstable	
	1/21/15	USPAS lect	ures: Wakes & Impedances	74

The head-tail instability

- The head-tail instability is unavoidable in the two-particle model
 - Either mode 0 or mode 1 is unstable
 - Growth/damping times are in all cases identical
- Fortunately, the situation is less dramatic in reality
 - The number of modes increases with the number of particles we consider in the model (and becomes infinite in the limit of a continuous bunch)
 - The instability conditions for mode 0 remain unchanged, but all the other modes become unstable with much longer rise times when mode 0 is stable
 - Therefore, the bunch can be in practice stabilized by using the settings that make mode 0 stable (ξ<0 below transition and ξ>0 above transition) and relying on feedback or Landau damping (refer to W. Herr's lectures) for the other modes
- To be able to study these effects we would need to resort to a more detailed description of the bunch
 - Vlasov equation (kinetic model)
 - Macroparticle simulations

The head-tail instability A glance into head-tail mode

- Different transverse head-tail modes correspond to different parts of the bunch oscillating with relative phase differences. E.g.
 - Mode 0 is a rigid bunch mode
 - Mode 1 has head and tail oscillating in counter-phase
 - Mode 2 has head and tail oscillating in phase and the bunch center in opposition

1/21/15

The head-tail instability Experimental observations (historical)

Observation in the CERN PSB in ~1974

(J. Gareyte and F. Sacherer)

Observation in the CERN PS in 1999

- The mode that gets first excited in the machine depends on
 - The spectrum of the exciting impedance
 - The chromaticity setting
- Head-tail instabilities are a good diagnostics tool to identify and quantify the main impedance sources in a machine

• Higher order head-tail modes (*l*≥1) are usually stabilized by tune spread and/or active feedback. However, if a high intensity beam stays in a machine long enough without sufficient tune spread and without feedback, these modes can also slowly grow.

• For example, a high intensity bunch becomes unstable in the CERN-PS over 1.2 s due to resistive wall

• The fundamental mode of a head-tail instability can be simulated to have a detailed look at the instability evolution for different chromaticity values (assuming the SPS parameters and a simple broad band model for the impedance)

⇒ Simulations reproduce what is observed in the machine!

⇒ Plots show three consecutive traces of the centroid signal along the bunch while the instability is growing

81

• Different values of chromaticity...

82

• Different values of chromaticity...

