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Outline 

1.  Introductory concepts 
o  Collective effects 
o  Transverse single particle dynamics including systems of 

many non-interacting particles  
o  Longitudinal single particle dynamics including systems of 

many non-interacting particles  
2.  Space charge 

o  Direct space charge (transverse) 
o  Indirect space charge (transverse) 
o  Longitudinal space charge 
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Outline 

3.  Wake fields and impedance 
o  Wake function and wake potential 
o  Definition of beam coupling impedance 
o  Examples – resonators and resistive wall 
o  Energy loss 
o  Impedance model of a machine 

4.  Instabilities – few-particle model 
o  Equations of motion 
o  Longitudinal plane: Robinson instability 
o  Transverse plane: rigid bunch instability, strong head-tail 

instability, head-tail instability 
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Multi-bunch beam s 

Interaction with the 
external environment 

Equations of 
motion of the 

beam particles �
�E, �B

⇥

Additional electromagnetic field 
acting on the beam, besides RF 
and external magnetic fields  
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Multi-bunch beam s 

Interaction with the 
external environment 

Equations of 
motion of the 

beam particles �
�E, �B

⇥

Additional electromagnetic field 
acting on the beam, besides RF 
and external magnetic fields  

Wakes and impedances 
–  Particles traveling through accelerator 

elements create trailing electromagnetic 
fields whose effect is modeled through 
the wake fields 

–  Wakes/impedances are computed 
o  (Semi-)Analytically – e.g. resistive wall 

for simple geometries 
o  Numerically by means of EM programs 

(e.g. CST Studio Suite) 
o  By means of bench measurements 

–  In a beam, all particles both create wakes 
and suffer from them 
o  The beam suffers energy loss in the 

creation of the wake and its interaction 
with it 

–  Wakes/impedances from different elements 
are combined to create the ‘impedance 
model’ of a given accelerator 
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Multi-bunch beam s 

Interaction with the 
external environment 

Equations of 
motion of the 

beam particles �
�E, �B

⇥

Additional electromagnetic field 
acting on the beam, besides RF 
and external magnetic fields  



Equations of longitudinal motion 
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–  The single particle (or macroparticle) 
in the witness slice λ(z)dz feels the 
force from  

–  RF 
–  The wake left from ‘earlier’ 

particles 
–  The bunch own space charge 

–  The wake contribution can extend to 
several turns 

Bunch head 

Bunch tail 
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Equations of longitudinal motion 
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Interaction between bunch and (RF + wake) is 
assumed smeared all over the circumference 
 
The wake is assumed to be the sum of the 
wakes from all elements along the ring (i.e. the 
longitudinal wake of the machine impedance 
model) 

Space charge term 
à Can also be associated to 
a wake function/impedance: 

W (sc)
|| (z) =

gR

✏0�2
�0(z)

+

Z(sc)
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i!gR

c2✏0�2

dz
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Z 1
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Wake force 
term 
F||

(W) (z) 
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Regime of potential well distortion (i.e. perturbations to equilibrium solution are damped) 
  Stable phase shift 
  Synchrotron frequency shift  
  Different matching (à bunch lengthening for lepton machines) 

Proportional to 
intensity 
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@ 

@z
+

˙�
@ 

@�
= 0 with stable  1(z, �, t)



Equations of longitudinal motion 

1/21/15 USPAS lectures: Wakes & Impedances 11 

dz

dt
= �⌘c�

d�

dt
=

eVrf (z)

2⇡Rp0
� e2

2⇡Rp0

1X

k=0

Z 1

z
�(z0 + 2⇡kR)W||(z � z0 � 2⇡kR)dz0� e2g�0(z)

2⇡✏0�2p0

H = �1

2
⌘c�2 +

eU(z)

2⇡Rp0
+

e2

2⇡Rp0

Z z

z0

dz00
1X

k=0

Z 1

z
�(z0 + 2⇡kR)W||(z � z0 � 2⇡kR)dz0

Regime of longitudinal instability (i.e. perturbations to equilibrium solution grow exponentially) 
  Dipole mode instabilities 
  Coupled bunch instabilities 
  Microwave instability (longitudinal mode coupling) 
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@ 

@t
+ ż
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Numerical implementation (longitudinal) 
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zn+1 = zn � 2⇡R⌘�n

�n+1 = �n +
eVrf (zn+1)

cp0
� e2

cp0
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0)W||(zn+1 � z0)dz0

We assume that interaction 
of bunch with (RF + wake + 
space charge) lumped at 
one or more locations. 
 
This is usually true for RF, it 
is a one-kick approximation 
for space charge and wake 
 
Wake from impedance 
model (can be divided by 
number of points, if more 
than one) 

�
e2gRZ0�0

n+1(zn+1)

�2p0
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zn+1 = zn � 2⇡R⌘�n

�n+1 = �n +
eVrf (zn+1)
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NslX

h=m

�n+1(h�zn+1)W||[(m� h)�zn+1]

•  Nsl is the number of slices in which a bunch is 
subdivided 

•  m is the slice index where zn+1 is located 
•  Δzn+1 is the slice width at step n+1 
•  Slicing needs to be fine enough as to sample 

the wake function 
•  Slice m included because of energy loss 
•  Discontinuity in z=0 make slicing 

requirement more stringent (need check of 
convergence of energy loss value) 

�
e2gRZ0�0

n+1(zn+1)

�2p0

Bunch head 

Bunch tail 

0 1 2 3 Nsl m 

Single turn wake 

�n+1(h�zn+1) =
�Nh

�zn+1

Number of 
particles in slice h 
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ntX
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For multi-turn wakes (i.e. preserving memory of the wake over nt turns) 

Single turn wake 
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zn+1 = zn � 2⇡R⌘�n

�n+1 = �n +
eVrf (zn+1)
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�n+1(z
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•  Too fine slicing (i.e. too low number of 
macroparticles per slice) can be the origin of noise 
problems  
→  If there are no other constraints in the simulation, 

slicing can be chosen such as to have a smooth 
derivative 

→  Smoothing can be applied to both distribution 
before differentiating and to derivative 

•  Alternatively, space charge force can be directly 
calculated from Es with Poisson solver (3 or 2.5D) 

�
e2gRZ0�0

n+1(zn+1)

�2p0

Bunch head 

Bunch tail 

0 1 2 3 Nsl m 

�n+1[(m+ 1)�zn+1]� �n+1[(m� 1)�zn+1]
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Numerical implementation (longitudinal) 
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At each interaction point 
macroparticles in each slice 
receive the kick from the 
wakes of the preceding 
slices. 
Slicing is refreshed at each 
turn taking into account the 
longitudinal motion 

W0N1+W1N0	   Σ	  WkNm-‐k	  

Slice	  1	  

K=0	  

m	  

Slice	  m	  

Σ	  WkNi-‐k	  K=0	  

Ns-‐1	  

Slice	  Nsl-‐1	  

W0N0	  

Longitudinal wake 
 
Wm = WII(m Δz) 

Energy loss 

Slice	  0	  



Equations of transverse motion 
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–  The single particle (or macroparticle) in 
the witness slice λ(z)dz feels the force 
from  

–  External focusing 
–  The wake left from ‘earlier’ 

particles 
–  The bunch own space charge 
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Nonlinear force depending on the 
local density +�(z) · F (x� hxi(z))
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–  The single particle (or macroparticle) in 
the witness slice λ(z)dz feels the force 
from  

–  External focusing 
–  The wake left from ‘earlier’ 

particles 
–  The bunch own space charge 

Bunch head 
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Need to couple to equations of longitudinal 
motion because of z-dependent wake  
à Neglect longitudinal wake 
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N.B. From now on, here we will omit the summation 
over the previous turns and space charge term 
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x =

s
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x

R

Q

x0
cos ✓
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r
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Q
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x

Change of variables in the transverse phase plane 
x, x’ à Jx, θx 

Beam transversely stable (i.e. perturbations to equilibrium solution are damped) 

  Head-tail modes 
  Coherent betatron tune shift with intensity 
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Beam transversely unstable (i.e. perturbations to equilibrium solution grow) 

  Head-tail modes with non-zero chromaticity and no damping  
  Transverse mode coupling instability (TMCI) above a current threshold 

Several codes developed to solve Vlasov equation and determine unstable 
(most critical) modes as well as stability regions. Some can include multi-bunch, 
chromaticity, amplitude detuning and transverse damper, but they all consider 
linearised longitudinal motion and only dipole wake fields. E.g. 

•  MOSES [Y. Chin, CERN/SPS/85-2 & CERN/LEP-TH/88-05] 
•  NHTVS [A. Burov, Phys. Rev. ST AB 17, 021007 (2014)] 
•  DELPHI [N. Mounet, HSC Meeting, 09/04/2014] 

 0(H) stationary solution of
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 0(H) +  1(Jx, ✓x, z, �, t) also solutionwith growing  1



Numerical implementation (transverse) 
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Assuming interaction of 
bunch with wake lumped 
at one or more locations 
+ 1-turn (or sector) map 
transport 
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zn+1 = zn � 2⇡R⌘�n

�n+1 = �n +
eVrf (zn+1)

E0

W
x

(z) =
1

h�i

NX

i=1

W (i)
x

(z) · �(i)
x

W
Qx

(z) =
1

h�i

NX

i=1

W (i)
Qx

(z) · �(i)
x

 
x

n+1

x

0
n+1

!
= M(�, J

x

) ·

0

B@
x

n

x

0
n

� e

2

2⇡RE0

Z 1

�1
�

n

(z0) [W
x

(z � z

0)hxi
n

(z0) +W

Qx

(z � z

0)x
n

] dz0

1

CA

•  Usually, the 1-turn transport matrix 
is built from the average beta 
function along the ring <βx>=R/Qx0 
and the tune Qx(δ,Jx)  

•  The wakes Wx and WQx are those 
from the impedance model (divided 
by the number of points, if more 
than one) 
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NslX
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•  Nsl is the number of slices in which a bunch is subdivided 
•  m is the slice index where zn+1 is located 
•  Δzn+1 is the slice width at step n+1 
•  Slicing needs to be fine enough as to sample the wake function 
•  If indirect space charge included, sum runs from 0 to Nsl  and peak 

on source slice needs to be resolved correctly  
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Bunch head 

Bunch tail 

0 1 2 3 Nsl m 
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For multi-turn wakes  
(i.e. preserving memory of the wake over nt turns) 
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Numerical implementation (transverse) 
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Bunch head 

Bunch tail 

0 1 2 3 Nsl m 

Space charge force from mth slice can be calculated with 
Bassetti-Erskine formula (soft-Gaussian approximation)  
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Bunch head 

Bunch tail 

0 1 2 3 Nsl m 

Space charge force from mth slice can be calculated with 
2D PIC solver from the macroparticle distribution in the 
slice m (PyHEADTAIL exercise from yesterday!) 
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Σ	  Nk[Wxkxk-‐1+WQxkx]	  
	  

Numerical implementation (transverse) 
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At each interaction point 
macroparticles in each slice 
receive the kick from the 
wakes of the preceding 
slices. 
Slicing is refreshed at each 
turn taking into account the 
longitudinal motion 

N0(Wx1x0+WQx1x)	  

Slice	  1	  

K=1	  

m	  

Slice	  m	  

Σ	  Nk[Wxkxk-‐1+WQxkx]	  K=1	  

Nsl-‐1	  

Slice	  Nsl-‐1	  Slice	  0	  Transverse (x) 
 
Dipolar: 
Wxm = Wx(m Δz)  
Quadrupolar: 
WQxm = WQx(m Δz) 
xm centroid of slice m 
x position of particle 
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One-particle models 
 

q Longitudinal plane à Robinson instability 
q Transverse plane à Rigid dipole instability 
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One-particle models 
 

q Longitudinal plane à Robinson instability 
q Transverse plane à Rigid dipole instability 



The Robinson instability 
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z 

δp/p0 

Unperturbed: the bunch executes 
synchrotron oscillations at ωs 

–  To illustrate the Robinson instability we will use some 
simplifications: 
⇒ The bunch is point-like and feels an external linear force (i.e. it 

would execute linear synchrotron oscillations in absence of the 
wake forces) 

⇒ The bunch additionally feels the effect of a multi-turn wake 
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–  To illustrate the Robinson instability we will use some 
simplifications: 
⇒ The bunch is point-like and feels an external linear force (i.e. it 

would execute linear synchrotron oscillations in absence of the 
wake forces) 

⇒ The bunch additionally feels the effect of a multi-turn wake 

 

z 

δp/p0 

The perturbation changes ωs 
The perturbation also 
changes the oscillation 
amplitude 
Unstable motion  
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–  To illustrate the Robinson instability we will use some 
simplifications: 
⇒ The bunch is point-like and feels an external linear force (i.e. it 

would execute linear synchrotron oscillations in absence of the 
wake forces) 

⇒ The bunch additionally feels the effect of a multi-turn wake 

 

z 

δp/p0 

The perturbation also changes 
the oscillation amplitude  
Damped motion 
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d2z

dt2
+

⇥eVrf(z)
m0�C

=
⇥e2

m0�C

⇤�

k=�⇤

⇥ ⇤

�⇤
⇤(z⇥ + kC)W||(z � z⇥ � kC)dz⇥

External RF Wake fields 

–  To illustrate the Robinson instability we will use some 
simplifications: 
⇒ The bunch is point-like and feels an external linear force (i.e. it 

would execute linear synchrotron oscillations in absence of the 
wake forces) 

⇒ The bunch additionally feels the effect of a multi-turn wake 

 

d2z

dt2
+ ⇤2

sz =
Ne2⇥

Cm0�

⇥�

k=�⇥
W⇤ [z(t)� z(t� kT0)� kC]
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–  To illustrate the Robinson instability we will use some 
simplifications: 
⇒ The bunch is point-like and feels an external linear force (i.e. it 

would execute linear synchrotron oscillations in absence of the 
wake forces) 

⇒ The bunch additionally feels the effect of a multi-turn wake 

 
d2z

dt2
+ ⇤2

sz =
Ne2⇥

Cm0�

⇥�

k=�⇥
W⇤ [z(t)� z(t� kT0)� kC]

We assume that the wake can be linearized on 
the scale of the oscillation amplitude 

W⇥ [z(t)� z(t� kT0)� kC] ⇥W⇥(kC) + W �
⇥(kC) · [z(t)� z(t� kT0)]
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W⇥ [z(t)� z(t� kT0)� kC] ⇥W⇥(kC) + W �
⇥(kC) · [z(t)� z(t� kT0)]

⇒  The term  Σ W||(kC) only contributes to a constant term in the solution of the 
equation of motion, i.e. the synchrotron oscillation will be executed around a 
certain  z0 and not around 0. This term represents the stable phase shift that 
compensates for the energy loss 

⇒  The dynamic term proportional to z(t)-z(t-kT0) ≈kT0dz/dt will introduce a 
“friction” term in the equation of the oscillator, which can lead to instability!  

 z(t) ⇥ exp (�i�t)

�2 � ⇤2
s = � Ne2⇥

Cm0�

⇤�

k=�⇤
[1� exp (�ik�T0)] · W ⇥

⌅(kC)

i · 1
C

⇥⇤

p=�⇥

�
p�0Z⇤(p�0)� (p�0 + �)Z⇤(p�0 + �)

⇥
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�⇤s = Re(⇥� ⇤s) =
⇤

e2

m0c2

⌅
N⇥

2�T 2
0 ⇤s

⇥⇧

p=�⇥

�
p⇤0ImZ⇤(p⇤0)� (p⇤0 + ⇤s)ImZ⇤(p⇤0 + ⇤s)

⇥

⇒ We assume a small deviation from the synchrotron tune 
⇒ Re(Ω - ωs) à Synchrotron tune shift 
⇒  Im(Ω - ωs) à Growth/damping rate, only depends on the 

dynamic term, if it is positive there is an instability!   
 

⇤�1 = Im(�� ⌅s) =
�

e2

m0c2

⇥
N⇥

2�T 2
0 ⌅s

⇥⇤

p=�⇥
(p⌅0 + ⌅s)ReZ⇤(p⌅0 + ⌅s)

�⇤s = Re(⇥� ⇤s) =
⇤

e2

m0c2

⌅
N⇥

2�T 2
0 ⇤s

⇥⇧

p=�⇥

�
p⇤0ImZ⇤(p⇤0)� (p⇤0 + ⇤s)ImZ⇤(p⇤0 + ⇤s)

⇥

�2 � �2
s ⇥ 2�s · (�� �s)

x 

x 

Complex 
frequency shift 
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1.0

Re[Z||] 

Im[Z||] ωr  ≈ hω0 

⇒  We assume the impedance to be peaked at a frequency ωr close 
to hω0 >> ωs (e.g. RF cavity fundamental mode or HOM) 

⇒  Only two dominant terms are left in the summation at the RHS of 
the equation for the growth rate  

⇒  Stability requires that η and Δ[Re Z||(hω0)] have different signs 
 

⇤�1 = Im(�� ⌅s) =
�

e2

m0c2

⇥
N⇥

2�T 2
0 ⌅s

⇥⇤

p=�⇥
(p⌅0 + ⌅s)ReZ⇤(p⌅0 + ⌅s)

⇤�1 =
⇤

e2

m0c2

⌅
N⇥h⌅0

2�T 2
0 ⌅s

�
ReZ⇥(h⌅0 + ⌅s)� ReZ⇥(h⌅0 � ⌅s)

⇥

�
�
ReZ�(h�0)

⇥

� · �
�
ReZ�(h⇥0)

⇥
< 0Stability criterion à 
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� · �
�
ReZ�(h⇥0)

⇥
< 0Stability criterion à 

ωr < hω0 ωr > hω0 
 

Above transition (η>0) stable unstable 

Below transition (η<0) unstable stable 

�
⇥
ReZ||(h!0)

⇤
< 0

�
⇥
ReZ||(h!0)

⇤
> 0

(b) !r > h!0(a) !r < h!0
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⇒  Other types of impedances can also cause instabilities through the 
Robinson mechanism 

⇒  However, a smooth broad-band impedance with no narrow structures 
on the ω0 scale cannot give rise to an instability 
ü  Physically, this is clear, because the absence of structure on ω0 scale in 

the spectrum implies that the wake has fully decayed in one turn time 
and the driving term in the equation of motion also vanishes  
 

⇤�1 = Im(�� ⌅s) =
�

e2

m0c2

⇥
N⇥

2�T 2
0 ⌅s

⇥⇤

p=�⇥
(p⌅0 + ⌅s)ReZ⇤(p⌅0 + ⌅s)

⇥�

p=�⇥
(p�0 + �s)ReZ⇤(p�0 + �s)�

1
�0

⇥ ⇥

�⇥
�ReZ⇤(�)d� � 0
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One-particle models 
 

q Longitudinal plane à Robinson instability 
q Transverse plane à Rigid dipole instability 



The rigid bunch instability 
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–  To illustrate the rigid bunch instability we will use some simplifications: 
⇒  The bunch is point-like and feels an external linear force (i.e. it would 

execute linear betatron oscillations in absence of the wake forces) 
⇒  Longitudinal motion is neglected 
⇒ Smooth approximation à constant focusing + distributed wake 

 

–  In a similar fashion as was done for the Robinson instability in the 
longitudinal plane we want to 
⇒ Calculate the betatron tune shift due to the wake 
⇒ Derive possible conditions for the excitation of an unstable motion 
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–  To illustrate the rigid bunch instability we will use some simplifications: 
⇒  The bunch is point-like and feels an external linear force (i.e. it would 

execute linear betatron oscillations in absence of the wake forces) 
⇒  Longitudinal motion is neglected 
⇒ Smooth approximation à constant focusing + distributed wake 

 d2y

ds2
+

�⇥�

c

⇥2
y = �

⇤
e2

m0c2

⌅
N

�C

⇥⇧

k=�⇥
y(s� kC)Wy(kC)

y ⇥ exp
�
�i�s

c

⇥ �2 � ⇥2
� =

Ne2

m0�C

⇥�

k=�⇥
exp (ik�T0) Wy(kC)

= �i
Ne2

m0�CT0

⇥�

p=�⇥
Zy(p⇥0 + �)

Comes from the definition of Zy 
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⇒ We assume a small deviation from the betatron tune 
⇒ Re(Ω - ωβ) à Betatron tune shift 
⇒  Im(Ω - ωβ) à Growth/damping rate, if it is positive there is an 

instability!   

 �2 � �2
� ⇥ 2�� · (�� ��)

Re (⇥� ⇧�)
⇧0

= �⇤y ⇥
Ne2�y

4⌅m0⇥cC

⇥�

p=�⇥
Im [Zy(p⇧0 + ⇧�)]

1
4⇥

�
�y

eIbIm(Ze�
y )

E

⇥
=

1
4⇥

⇤
�y(s)�k(s)ds

Im (�� ⌅�) = ⇤�1
y ⇥ � Ne2�y

2m0⇥C2

⇥�

p=�⇥
Re [Zy(p⌅0 + ⌅�)]
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Re[Zy] 

Im[Zy] ωr  ≈ hω0 

Im (�� ⌅�) = ⇤�1
y ⇥ � Ne2�y

2m0⇥C2

⇥�

p=�⇥
Re [Zy(p⌅0 + ⌅�)]

⇒  We assume the impedance to be peaked at a frequency ωr close 
to hω0 (e.g. RF cavity fundamental mode or HOM) 

⇒  Defining the tune νy=ny + Δβy with -0.5<Δβy<0.5, we can easily 
express the only two leading terms left in the summation at the 
RHS of the equation for the growth rate  
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⇒  We assume the impedance to be peaked at a frequency ωr close 
to hω0 (e.g. RF cavity fundamental mode or HOM) 

⇒  Defining the tune νy=ny + Δβy with -0.5<Δβy<0.5, we can easily 
express the only two leading terms left in the summation at the 
RHS of the equation for the growth rate  

 

Im (�� ⌅�) = ⇤�1
y ⇥ � Ne2�y

2m0⇥C2

⇥�

p=�⇥
Re [Zy(p⌅0 + ⌅�)]

⇤�1
y ⇥ � Ne2�y

2m0⇥C2
(Re [Zy(h⌅0 + ��y⌅0)]� Re [Zy(h⌅0 ���y⌅0)])
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⇤�1
y ⇥ � Ne2�y

2m0⇥C2
(Re [Zy(h⌅0 + ��y⌅0)]� Re [Zy(h⌅0 ���y⌅0)])

ωr < hω0 ωr > hω0 

Tune above integer 
(Δby>0) unstable stable 

Tune below integer 
(Δby<0) stable unstable 

h�0 h�0

Zy(�) Zy(�)

�r�r

(a) !r < h!0 (b) !r > h!0
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⇒  We assume the impedance to be of resistive wall type, i.e. strongly 
peaked in the very low frequency range (à 0) 

⇒  Using the same definitions for the tune as before, we can easily 
express the only two leading terms left in the summation at the RHS 
of the equation for the growth rate  

 

Im (�� ⌅�) = ⇤�1
y ⇥ � Ne2�y

2m0⇥C2

⇥�

p=�⇥
Re [Zy(p⌅0 + ⌅�)]
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0
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⇒  Using the same definitions for the tune as before, we can easily 
express the only two leading terms left in the summation at the 
RHS of the equation for the growth rate  

 

Re [Zy] 

Always stable 

⇤�1
y ⇥ � Ne2�y

2m0⇥C2
(Re [Zy(��y⌅0)]� Re [Zy((1���y)⌅0)]) < 0

�(1���y)!0

��y�0

0 < ��y < 0.5
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⇒  Using the same definitions for the tune as before, we can easily 
express the only two leading terms left in the summation at the 
RHS of the equation for the growth rate  

 

-6 -4 -2 0 2 4 6
-6
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0
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6

Re 
[Zy] 

�0.5 < ��y < 0

��y�0

⇤�1
y ⇥ � Ne2�y

2m0⇥C2
(Re [Zy((1 + ��y)⌅0)]� Re [Zy(���y⌅0)]) > 0

Always unstable 

(1 +��y)!0
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⇒  Using the same definitions for the tune as before, we can easily 
express the only two leading terms left in the summation at the 
RHS of the equation for the growth rate  
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Re 
[Zy] 

�0.5 < ��y < 0

��y�0

⇤�1
y ⇥ � Ne2�y

2m0⇥C2
(Re [Zy((1 + ��y)⌅0)]� Re [Zy(���y⌅0)]) > 0

Always unstable 

(1 +��y)!0
This is the reason why most of the running 
machines are usually operated with a fractional 
part of the tunes below 0.5! 
In practice, tunes above the half integer can be 
used, if the resistive wall instability is damped 
by other mechanisms or efficiently suppressed 
with a feedback system 
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Two-particle models 
 

q Transverse plane à Strong head-tail instability 
q Transverse plane à Head-tail instability 
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Two-particle models 
 

q Transverse plane à Strong head-tail instability 
q Transverse plane à Head-tail instability 
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–  To illustrate TMCI we will need to make use of some simplifications: 
⇒  The bunch is represented through two particles carrying half the total bunch charge 

and placed in opposite phase in the longitudinal phase space  
⇒  They both feel external linear focusing in all three directions (i.e. linear betatron 

focusing + linear synchrotron focusing). 
⇒  Zero chromaticity (Q’x,y=0) 
⇒  Constant transverse wake left behind by the leading particle 
⇒  Smooth approximation à constant focusing + distributed wake 

 

–  We will 
⇒ Calculate a stability condition (threshold) for the transverse motion 
⇒ Have a look at the excited oscillation modes of the centroid 

 



The strong head-tail instability 

1/21/15 USPAS lectures: Wakes & Impedances 55 

–  To illustrate TMCI we will need to make use of some simplifications: 
⇒  The bunch is represented through two particles carrying half the total bunch charge 

and placed in opposite phase in the longitudinal phase space  
⇒  They both feel external linear focusing in all three directions (i.e. linear betatron 

focusing + linear synchrotron focusing) 
⇒  Zero chromaticity (Q’x,y=0) 
⇒  Constant transverse wake left behind by the leading particle 
⇒  Smooth approximation à constant focusing + distributed wake 

 

z 

δp/p0 

z 

Wy 

-W0 

Particle 1 (+Ne/
2) 

Particle 2 (+Ne/
2) 
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–  To illustrate TMCI we will need to make use of some simplifications: 
⇒  The bunch is represented through two particles carrying half the total bunch charge 

and placed in opposite phase in the longitudinal phase space  
⇒  They both feel external linear focusing in all three directions (i.e. linear betatron 

focusing + linear synchrotron focusing) 
⇒  Zero chromaticity (Q’x,y=0) 
⇒  Constant transverse wake left behind by the leading particle 
⇒  Smooth approximation à constant focusing + distributed wake 

 

z 

z 

Wy 

-W0 

Particle 1 (+Ne/
2) 

Particle 2 (+Ne/
2) 
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⇒  During the first half of the synchrotron motion, particle 1 is 
leading and executes free betatron oscillations, while particle 2 is 
trailing and feels the defocusing wake of particle 1  

 

d2y1

ds2
+

���

c

⇥2
y1 = 0

d2y2

ds2
+

�⇥�

c

⇥2
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2�C
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⇒  During the first half of the synchrotron motion, particle 1 is 
leading and executes free betatron oscillations, while particle 2 is 
trailing and feels the defocusing wake of particle 1  

⇒  During the second half of the synchrotron period, the situation is 
reversed 

 

d2y2

ds2
+

���

c

⇥2
y2 = 0

d2y1

ds2
+

�⇥�

c

⇥2
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⇤
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⌅
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2�C
y2(s) �c

⇥s
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⇒  We solve with respect to the complex variables defined below during 
the first half of synchrotron period 

⇒  y1(s) is a free betatron oscillation 
⇒  y2(s) is the sum of a free betatron oscillation plus a driven oscillation 

with y1(s) being its driving term 
 

ỹ1(s) = ỹ1(0) exp
�
�i��s

c

⇥

Free oscillation term Driven oscillation term 

ỹ2(s) = ỹ2(0) exp
⇤
� i⇥�s
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⌅
+i
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4m0�cC⇥�

⇧
c
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c

⇥
+ ỹ1(0)s exp

⇤
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c

!�
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⇒  Second term in RHS equation for y2(s) negligible if ωs<<ωβ	

⇒  We can now transform these equations into linear 

mapping across half synchrotron period 

ỹ1
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⇒  In the second half of synchrotron period, particles 1 and 2 
exchange their roles	


⇒  We can therefore find the transfer matrix over the full 
synchrotron period for both particles 

⇒  We can analyze the eigenvalues of the two particle system 

⇤
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⇒  Since the product of the eigenvalues is 1, the only condition 
for stability is that they both be purely imaginary exponentials 

⇒  From the second equation for the eigenvalues, it is clear that 
this is true only when sin(φ/2)<1	


⇒  This translates into a condition on the beam/wake parameters 
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⇒  Proportional to p0 à bunches with higher energy tend 
to be more stable	


⇒  Proportional to ωs à the quicker is the longitudinal 
motion within the bunch, the more stable is the bunch   

⇒  Inversely proportional to βy à the effect of the 
impedance is enhanced if the kick is given at a 
location with large beta function  ⇒  Inversely proportional to the wake per unit length 

along the ring, W0/C à a large integrated wake 
(impedance) lowers the instability threshold 
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⇒  For a real bunch, modes exhibit a more complicated shift pattern 
⇒  The shift of the modes can be calculated via Vlasov equation or can 

be found through macroparticle simulations 

Simplified calculation 
for a short bunch 

Full calculation for a relatively long SPS bunch (red 
lines) + macroparticle simulation (white traces) 
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Two-particle models 
 

q Transverse plane à Strong head-tail instability 
q Transverse plane à Head-tail instability 
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Difference! à now the frequency of free oscillation 
is modulated by the momentum spread, δ(s) 

⇒  As for the TMCI, during the first half of the synchrotron motion, 
particle 1 is leading and executes free betatron oscillations, while 
particle 2 is trailing and feels the defocusing wake of particle 1  

⇒  During the second half of the synchrotron period, the situation is 
reversed 
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⇒ Similarly to the solution for the Strong Head Tail Instability, 
we obtain the transport map 
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+ mode is “in-phase” mode à the two 
particles oscillate in phase (ωβ) 
- mode is “out-phase” mode à the two 
particles oscillate in opposition of phase    
(ωβ ± ωs) 

Weak beam intensity: 
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⇒  Inversely proportional to p0 à bunches with higher energy 
tend to be less affected by impedances	


⇒  Proportional to N à the more intense is the bunch, the 
more sensitive it is   

⇒  Proportional to bunch length à this depends on the 
chosen shape of the wake 

⇒  Proportional to ξy à higher chromaticity enhances the 
head-tail effect 

⇒  Inversely proportional to η à faster synchrotron motion 
stabilizes (lowest rise times close to transition crossing!) 

⇒  Proportional to the wake per unit length along the ring, W0/C 
à a large integrated wake (impedance) gives a stronger effect 
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ξy>0 ξy<0 
 

Above transition (η>0) damped unstable 

Below transition (η<0) unstable damped 

Mode 0 (+) 

ξy>0 ξy<0 
 

Above transition (η>0) unstable damped 

Below transition (η<0) damped unstable 

Mode 1 (–) 
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•  The head-tail instability is unavoidable in the two-particle model 
  Either mode 0 or mode 1 is unstable 
  Growth/damping times are in all cases identical 

•  Fortunately, the situation is less dramatic in reality  
  The number of modes increases with the number of particles we consider in the model 

(and becomes infinite in the limit of a continuous bunch) 
  The instability conditions for mode 0 remain unchanged, but all the other modes 

become unstable with much longer rise times when mode 0 is stable   
 

ξy>0 ξy<0 
 

Above transition (η>0) damped unstable 

Below transition (η<0) unstable damped 

ξy>0 ξy<0 
 

Above transition (η>0) unstable damped 

Below transition (η<0) damped unstable 

Mode 0  

All modes >0 
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•  The head-tail instability is unavoidable in the two-particle model 
  Either mode 0 or mode 1 is unstable 
  Growth/damping times are in all cases identical 

•  Fortunately, the situation is less dramatic in reality  
  The number of modes increases with the number of particles we consider in the model 

(and becomes infinite in the limit of a continuous bunch) 
  The instability conditions for mode 0 remain unchanged, but all the other modes 

become unstable with much longer rise times when mode 0 is stable   
  Therefore, the bunch can be in practice stabilized by using the settings that make 

mode 0 stable (ξ<0 below transition and ξ>0 above transition) and relying on feedback 
or Landau damping (refer to W. Herr’s lectures) for the other modes 

•  To be able to study these effects we would need to resort to a more detailed 
description of the bunch 
  Vlasov equation (kinetic model) 
  Macroparticle simulations 
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•  Different transverse head-tail modes correspond to different parts of the bunch 
oscillating with relative phase differences. E.g. 
  Mode 0 is a rigid bunch mode 
  Mode 1 has head and tail oscillating in counter-phase 
  Mode 2 has head and tail oscillating in phase and the bunch center in opposition 
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•  The mode that gets first excited in the machine depends on 
  The spectrum of the exciting impedance 
  The chromaticity setting 

•  Head-tail instabilities are a good diagnostics tool to identify and quantify the 
main impedance sources in a machine 
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• 	  Higher	  order	  head-‐tail	  modes	  (l≥1)	  are	  usually	  stabilized	  by	  tune	  spread	  and/or	  acHve	  feedback.	  
However,	  if	  a	  high	  intensity	  beam	  stays	  in	  a	  machine	  long	  enough	  without	  sufficient	  tune	  spread	  
and	  without	  feedback,	  these	  modes	  can	  also	  slowly	  grow.	  
• 	  For	  example,	  a	  high	  intensity	  bunch	  becomes	  unstable	  in	  the	  CERN-‐PS	  over	  1.2	  s	  due	  to	  resisHve	  
wall	  

|l| = 4 |l| = 5 |l| = 7 

|l| = 8 |l| = 10 
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• 	  The	  fundamental	  mode	  of	  a	  head-‐tail	  instability	  can	  be	  simulated	  to	  have	  a	  detailed	  
look	  at	  the	  instability	  evoluHon	  for	  different	  chromaHcity	  values	  (assuming	  the	  SPS	  
parameters	  and	  a	  simple	  broad	  band	  model	  for	  the	  impedance)	  
⇒ 	  SimulaHons	  reproduce	  what	  is	  observed	  in	  the	  machine!	  
⇒ 	  Plots	  show	  three	  consecuHve	  traces	  of	  the	  centroid	  signal	  along	  the	  bunch	  while	  
the	  instability	  is	  growing	  	  

Measurement	  at	  the	  SPS	  (06.08.2007),	  ξy=-‐0.2	  



The head-tail instability 
Experimental observations 

1/21/15 USPAS lectures: Wakes & Impedances 81 

	  
• 	  Different	  values	  of	  chromaHcity…	  

Measurement	  at	  the	  SPS	  (06.08.2007),	  ξy=-‐0.5	  

Measurement	  at	  the	  SPS	  (06.08.2007),	  ξy=-‐0.6	  
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• 	  Different	  values	  of	  chromaHcity…	  

Measurement	  at	  the	  SPS	  (06.08.2007),	  ξy=-‐0.7	  

Measurement	  at	  the	  SPS	  (06.08.2007),	  ξy=-‐0.8	  


