Perturbation Formalism
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1. Introductory concepts
0 Collective effects

0 Transverse single particle dynamics including systems of many non-interacting
particles

0 Longitudinal single particle dynamics including systems of many non-interacting
particles

2. Space charge
0 Direct space charge (transverse)
0 Indirect space charge (transverse)
0 Longitudinal space charge
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3. Wake fields and impedance

0 Definition of beam coupling impedance
Examples — resonators and resistive wall
Energy loss
Wake function and wake potential
0 Impedance model of a machine

4, Instabilities — few-particle model
0 Equations of motion
0 Longitudinal plane: Robinson instability

0 Transverse plane: rigid bunch instability, strong head-tail instability, head-tail
instability
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5. Instabilities — kinetic theory
0 Introduction to Vlasov equation and perturbation approach
0 Vlasov equation in the longitudinal plane
0 Vlasov equation in the transverse plane
0 Oscillation modes, shift with intensity, instability
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Hamiltonian systems |§ |
We define a Hamiltonian system (I", w, X' ) composed of:

« a manifold I

« a symplectic form w

e a Hamiltonian vector field X

where the Hamiltonian vector field X is determined by the condition
ixw=dH (& wX,Y)=dH(Y)).

In canonical coordinates:

X =JVH, J:<O 1).
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Hamiltonian systems

We can restate the principle of least action as: 2
the time evolution of the state vectors (7, p) € I is given by the integral
curve of X:

(q,p) = X(q,p) = JVH(q,P).

It follows that the time evolution of any function ¢ € f : I' — R is given
by the Poisson bracket:

b= —[H,¥] +Opp =0.°

In particular, any function v)( H ) is a stationary solution (in the narrower
sense), as

2 . _ Exercise: prove this. Can you also show this just
Fundamental physics, see e.g. Goldstein using the algebraic properties of the Poisson

5The last step follows from Liouville’s theorem  bracket?

Hint: In particular, the Poisson bracket acts as a
9 | &2
January 2015
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Poisson brackets

The Poisson bracket is defined as

OF 8G  OF 3G
dq Op  Op Oq

[FvG] —

It has the following algebraic properties
1. [F,G] = —|G, F] (Anticommutativity)
2. [F+ G, H] = [F,H|+ |G, H] (Distributivity)
3. |[FG,H| = |F,H|G+ F |G, H| (Derivation)

4. |A,|B,C| + |B,|C, A]] + |C, |A, B]] = 0 (Jacobi identity)

January 2015 USPAS — perturbation formalism 7164
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Multi-particle systems

State space I' (I'-space) for a multi-particle system of particlenumber /V:

« State space vectors:
(¢1,G25 - -+ +G3N P15 D2, - -, p3n) €T ~ RV

* Energy function:
Hef:T~RY 4R

3N 3N
H(q17QQ7'°'7QSN7p17p27"'7p3N): § HS(QMP%)"‘ E HC(Q’L?Q])
) JF£1
Particlenumber Particlenumber Particlenumber Particlenumber
in the observable universe in molecular systems in plasmas (beams) in numerical simulations
N ~ 1089 — 1099 N ~ 1023 N ~ 10° — 10" N ~ 10
A
C\w \/'/
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Single particle PDF

Our strategy will be to find a more practical representation for the state space vectors.
We start off with the state space vectors and energy function for a multi-particle system
of particlenumber [V:

 State space vectors:

(Q17QQ7 c-«y4q3N,P1, D2, - - - 7p3N) cl ~ RGN

» Energy function:
H(g,p) € f: T ~R*™Y 5 R

 Time evolution:

at(Ql,QQ, +++»4q3N,P1,P2, - - - 7p3N) — [H7 (Q17qQ7 +-+yq3N,P1,P2,5 - - - 7p3N)]

0
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Single particle PDF

Our strategy will be to find a more practical representation for the state space vectors.
We move from representing a multi-particle state by the state space vectors to the
multi-particle probability distribution function...

« State functions:
Un(g,p) € f: T ~R"W =R

« Energy function:
H(g,p)e f:T ~R*Y &R

* Time evolution:
N (g, p) = [H,¥N]
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Single particle PDF Ih‘b

Our strategy will be to find a more practical representation for the state space vectors.
We move from representing a multi-particle state by the state space vectors to the
multi-particle probability distribution function... from there directly to the single particle
probability density function:

« State functions:
Vi(q,p) € f: T ~R° =R

« Energy function:
H(g,p)e f:T~R° =R

* Time evolution:
Orp1(q,p) = [H, 1]

It turns out that the single particle probability density function is perfectly well suited
representation of the original multi-particle state.
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Single particle PDF

Doing this rigorous, we would need to start off from the /V-particle probability density
function

WN(G1:G2s- -+ Q3N D1, D2, - - -, D3N, 1) € [ : T~ R 5 R

together with the Liouville equation

at¢N — [Ha wN]

and then move through the full BBGKY-hierarchy (Bogoliubov-Born-Green-Kirkwood-
Yvon) to obtain the single-particle probability density function

1(gq,p,t) = N/¢N(q, q2,---,q3N, Py P2, ---,P3N) dqa ... dgsn dpa . . . dpsn

with all correlations. Taking into account the long-range nature of the Coulomb inter-
action and applying the mean-field approximation, the BBGKY-hierarchy immediately
reduces to the Vlasov equation for the single-particle probability distribution function.

Ny
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Vlasov equation .

Let ¢y € f : ' ~ R% — R be the single-particle probability density function (for
example of a beam). The number of particles dn found in the phase space volume
d?q d?p around the point (g, p) is, then, given by

dn = (q,p)d’qd’p.
Let the accelerator Hamiltonian? H € f : I' ~ R® — R be given as
H(q,p) = Ho + H;

where H( stands for the single particle Hamiltonian and f; includes the collective

effects (in mean-field approximation).
The space evolution of the single-particle probability density function of the beam under
the influence of the accelerator Hamiltonian is then given by the Poisson bracket

3s¢ — [Haw] .

4The accelerator Hamiltonian is typically transformed to generate translations in space s, denoting a
location along tpe gath of the beam, rather than in time ¢.
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Potential well distortion 3

We have learned that any distribution function of the Hamiltonian is a stationary solution
of the Vlasov equation. Consider the following Gaussian distribution function

H

Y(H) o< e

with the (purely longitudinal) Hamiltonian

H(z,0) = —17752 _ L (e 2 2+ - /Z dz" /OO dz' p(2YW{(Z" — 2"
’ 2 277 BC 52EC 0 oz 0 .

¥(2,6) =e 7% p(2)

and we can immediately write down the equation for the stationary line-density function:

2
Ws 2 y
p(z) = exp (— (2770550> 7705ﬁ2EC/ dz /,, dz" p(z") Wi (2" )) .
14064
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Potential well distortion '("b

We have learned that any distribution function of the Hamiltonian is a stationary solution
of the Vlasov equation. Consider the following Gaussian distribution function

H

Y(H) o< e

with the (purely longitudinal) Hamiltonian

H(z,0) = —17752 _ L (e 2 2%+ - /Z dz" /OO dz' p(2YW{(Z" — 2"
’ 2 2n \ fe B2EC J, v '

Haissinki-equation:
It Is transcendental and needs to be solved numerically. The perturbed
stationary solution is a result of the potential-well distortion which is the

zeroth order effect from the wake fields.

- wez \’ A" | de p(z )W,
) =exp (~ (g ) MBQEC [ ae [ a oy wier -2 )
15/6
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Potential well distortion

From pure energy balance
considerations we can already
infer how the bunch will readjust
in the RF bucket

To compensate for the energy
loss, the bunch will adjust the
stable phase in the RF bucket —
towards the tail of the bunch
below transition and towards the
head of the bunch above
transition

0
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The line density as a function of total bunch charge for the
example of a Gaussian beam distribution and a purely resistive
impedance

USPAS — perturbation formalism 16/64



| Jun
Synchroton tune shift due to a wake™

The synchrotron tune shift due to the wakefield can be evaluated simply from an expan-
sion of the Hamiltonian and will be simply given by the z2-coefficient of the expansion:

1 ne?c? 02
Awg = ~%. BC 972 /dz’p(z')Wé’(z — 2

ne?c?

! Adrw, EC

dw plw) = Zo(w)

We finally arrive at the synchrotron tune shift given as

1 e?

AQ. = ~ 1=t [ dwe ) 1m(Zo(w)
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SPS tune shift measurements **

 The potential well leads to an intensity dependent tune shift which can be
measured to probe the imaginary part of the impedance

 The technigue uses the quadrupole oscillations of a bunch injected with a
mismatch

* Qs can be extrapolated from bunch length or peak amplitude measurements

10 - V=000 kV f=a+b N 107"
. N =51 =10 330
" s f£: 288.8 +/- 0.31 Hz ' 3820 |
- 0TI Sk n A 310
' + [t it f =
: 0.3 fI!F ;I"i' |“|‘r fl*' n Fil fq Eg{}u
= f ki
o.2sf |t 1 ] i Pt ]' I =
. | - |l ot 1 w20
E (1 ! I AR T
3 0 ' ]I A O - gzau
E-0.25 ' 1} + *1*1 #f ]l P ﬁzm
1 . ]
-0.5 Jf bf ¥ k) H‘ ?‘f . .J £260
Y o Ly
0.01 0.015 0.02  0.025 3250 ;
Tim [5] E_q_ﬂ:|||||||||||||||||||||||||||||||||||||
0 2 4 6 8 10 12 14 16 18

N/A0™
Evolution of the imaginary part of the machine impedance
(E. Shaposhnikova, T. Bohl, J. Tuckmantel) over time
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Vlasov eq. — perturbation approaclt

Let’s now expand the single-particle probability density function ). We assume we
have found an equilibrium distribution 1y such, that

[HﬂvbO] = 0.

We add a small perturbation 11 to this equilibrium distribution resulting in the total
perturbed distribution

Y =1y + 1Py

The time evolution of the total distribution under the accelerator Hamiltonian is given
as

Ortho + 01 = |Ho + H1 (Yo + 1), %o + 1]
= [Ho + H1 (o) + H1(¢1), %0 + 1],

where we have used that H; is linear in the distribution function ).
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Vlasov eq. — perturbation approac

If we manipulate the Poisson brackets in the previous equation, we arrive to

Ospo + Oihy = [Ho + Hy(v0o), 0]
+ [Ho + Hy(%0), Y1) + [H1(1), v0]
+ [Hy (1), ¥1] -

January 2015 USPAS — perturbation formalism 20/64
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Vlasov eq. — perturbation approac

If we manipulate the Poisson brackets in the previous equation, we arrive to

Otpo + Optp1 = [Ho +|H1 (Yo [;770]
+ [Ho +H1 (o e [H1(11), o)
+ [Hi (1), 1] -

Potential well distortion
— can be absorbed in a
redefinition of psi_0

Potential well perturbation —
neglected as it is not essential
for the mechanism of collective
beam instabilities
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Vlasov eq. — perturbation approac

If we manipulate the Poisson brackets in the previous equation, we arrive to

Ottho + O = [Ho, 1o
+ [Ho, ¥1] + [H1(21), Yo
+ [Hi (1), 1]

January 2015 USPAS — perturbation formalism 22/64
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Vlasov eq. — perturbation approac

If we manipulate the Poisson brackets in the previous equation, we arrive to

Dt + Opby = [HezTo]

Unperturbed solution known - [HO’ ¢1] + [Hl (@bl)v @DO]
— cancelation + [H1(1), 1] .
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Vlasov eq. — perturbation approac

If we manipulate the Poisson brackets in the previous equation, we arrive to

Dt + Opby = [HezTo]

Unperturbed solution known - [HO’ ¢1] + [Hl (@Dl)v @DO]
— cancelation + [HM np

Second order in perturbation
— neglected
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Vlasov eq. — perturbation approach™

We finally arrive at the Vlasov equation which expresses the time evolution of a small
perturbation 11 ontop of an equilibrium distribution 1)y due to collective effects de-
scribed by the Hamiltonain H1 (/1)

Ost1 = [Ho, 1] + [H1(v1), o] -
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Vlasov eq. — 1-dimensional system™"

We finally arrive at the Vlasov equation which expresses the time evolution of a small
perturbation 11 ontop of an equilibrium distribution 1)y due to collective effects de-
scribed by the Hamiltonain H1 (/1)

Ost1 = [Ho, 1] + [H1(v1), o] -

We, then, consider the purely longitudinal Hamiltonians

2
1 1 5
Hy=—-nd6*— — (w_) z?

2 2n \ Bc
H o 62 d //V 1/
1= ppe | 2 VED
Vi(z) = /dz’ Z p0) (") e=8Us/Be)=RTo )yl (o — 2/ — keTy)

k=—o0
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Vlasov eq. — 1-dimensional syste

We search for stationary solutions, in the broader sense, given as
()

53101 = _iﬁc

Y1 -
Therefore, we can specify the solution as

w(z7 6) — ¢0(275) + ¢1(275) — fO(Za 5) + fl(zaé)e_iQS/(ﬁ@ :

CETQW
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Vlasov eq. — 1-dimensional system®™*

We finally arrive at the Vlasov equation which expresses the time evolution of a small

perturbation 11 ontop of an equilibrium distribution 1)y due to collective effects de-
scribed by the Hamiltonain H1 (/1)

Osr =|[Ho, Y1 ||+|[H1(1h1), tho] |
w(zv 6) — wO(za 5) + wl('% 5) — fO(Za 5) + fl(zvcs)e_iQS/(ﬁC) :

We, then, consider the purely longitudinal Hamiltonians

I o 1 [ ws ’ 5 We now need to evaluate the two
Hy = —5775 ™ 5_ z Poisson brackets using the distribution
i ¢ functions and the Hamiltonians we
. o2 /d ”V( ) have developed
— z z
YT R2EC

V(z) = /dz’ Z PO (2)e MU/ (BRI W (5 — 2/ — keTy)
N\

é/ k=—o0

e Rme/ANS CERN January 2015 USPAS - perturbation formalism 28/64
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1

Given the form of the Hamiltonian H it will be helpful to move to polar coordinates

Vlasov eq. — 1-dimensional syste

Step #1: evaluate first Poisson bracket

2
- _ 5 nBc 2 Q_@Q %3
2 =17Ccos¢, r \/Z +<w8> 0%, az_ﬁzﬁr+523¢
Cw B nBc o _0oro 0690
5 = nﬁcrsmcb, qb—arctan(ws z) : 55~ 95 r + 96 00
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Vlasov eq. — 1-dimensional syste

Step #1: evaluate first Poisson bracket

The Poisson bracket becomes:
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Vlasov eq. — 1-dimensional syste

Step #2: evaluate second Poisson bracket

The Poisson bracket becomes:

- dJ1 Ws ’ z df1 —iQs/(Bc)
[Hoa%] — <775(92 - (@) 7735> =

Ws Of1 __i0s/(pe)

fe 09

Because |[Hy, fo] = 0 ([Ho, | = 0) it follows that fo(z,6) = fo(r). Then, the
second Poisson bracket evaluates to

OH1 0 fo

Oz 00

2
— BQeEC’ 735; sin ¢ fo, V(2)

(Hy, 0] =

CE?W
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Vlasov eq. — 1-dimensional syste

Step #2: evaluate second Poisson bracket

We then write the Vlasov equation with the evaluated Poisson brackets as

QL iasise _ _Ws O iasype & mBe
Zﬁcfle = "5 5¢€ +52EC o sing fo V(2)

_WsOf iosspe) € MPC
Bc 0 © T REC W, oo

X /dz’ Z p(2)e 8/ B)=RTO W (5 — o) — keTy)

k=—00
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Vlasov eq. — 1-dimensional syste

Step #3a: ® decomposition of f1

We now need to find appropriate decompositions for f;. In a straightforward and gen-
eral approach we opt for the Fourier transform:

¢-decomposition:

filr,d) = aiRi(r)e'?.

[
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Vlasov eq. — 1-dimensional systent

Step #3a: ® decomposition of f1

Inserting the decomposition above we arrive at the Vlasov equation

2 02
VR // l” O — " )e—82s/(Be) — . € T7c
;al l ?( s)e ZEC’ o sin ¢ f;)
/dz Z p(2) e 8Us/B=RTO W (5 — o) — keTy)

k=—o00
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Vlasov eq. — 1-dimensional systent
Step #3b: frequency domain

Inserting the decomposition above we arrive at the Vlasov equation

"o —iQs/(Bc 62 c?
;Cll//Rl// el (Q — 1" w,)e s/ (Be) — ZE—C o sin ¢ f)
X /dz’ Z p(2) e 8Us/B=RTO W (5 — o) — keTy)
k=—o0
—~ -

Frequency domain
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Vlasov eq. — 1-dimensional systent
Step #3b: frequency domain

Inserting the decomposition above we arrive at the Vlasov equation

2 2
VR // l” O — " )e—82s/(Be) — . € T7c
;al l ( s)e ZEC’ o sin ¢ f;)
/dz Z p(2')e S/ B=KTOYW! (5 — o' — kcTy)

k=—o00

CE?W
\
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Vlasov eq. — 1-dimensional systent
Step #3b: frequency domain

Inserting the decomposition above we arrive at the Vlasov equation
2 2

VR N l” O — ") e~ s/ (Be) — . € 1c
;@l l ( s)€ ZEC’ o quﬁfo

o0 1 ' )
/ A iwz' [(Bc)
X /dz k:E_OO QWBc/dw plw)e

1
27T

dw’ e iw' (z—z —kﬁcTo)/(ﬁc)Z(w/) e—iQ(s/(Bc)—kTo)

CE?W
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Vlasov eq. — 1-dimensional systent
Step #3b: frequency domain

Inserting the decomposition above we arrive at the Vlasov equation

2 02
y Ry (1) () — 1wy ) e/ (Be) — . € ne
;al l ( s)e ZEC’ o sin ¢ f)
1
iw'z/(Be) 7
477250 g /dwdw dz' p(w)e (W)

k=—00
> ei(w—w V2! /(Bc)eikTo(Q—w )e—iQs/(ﬁc)
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Vlasov eq. — 1-dimensional syste
Step #3b: frequency domain

Inserting the decomposition above we arrive at the Vlasov equation

62 2

il —iQs c . nce .
ZaluRlu(r)el PO — 1w )e 8/ (B0) — "BC e sin ¢ f)

1 w
25 Z /dw dw' dz' p(w)e #1897 (w")
k=—00

> ei(w—w’)z’/(ﬁc) eikTg(Q—w')e—iQs/(ﬁc)
N— S
| YT
T ik(x—zx") _ o
o dk e d(x — ')

l//

X
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Vlasov eq. — 1-dimensional systent
Step #3b: frequency domain

Inserting the decomposition above we arrive at the Vlasov equation

2 2

R N l” O — ") e~ s/ (Be) _ . € 7c
;al l ( s)€ ZEC’ o sm¢f0

Z /dwp 'sz/(ﬂc)Z( ) itkTo(2—w) —zQs/(ﬁc)

k——oo

CE?W
\

Nyl
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Vlasov eq. — 1-dimensional systent
Step #3b: frequency domain

Inserting the decomposition above we arrive at the Vlasov equation

2 2

R N l” O — ") e~ s/ (Be) _ . € 7c
;al l ( s)€ ZEC’ o sm¢f0

Z /dwp 'sz/(ﬂc)Z( ) itkTo(2—w) —zQs/(ﬁc)

\k——oo -
~ V%
Z eFT = o Z d(x — 27p)
k=—o0 p=—00

CE?W
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Nyl
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Vlasov eq. — 1-dimensional syste
Step #3b: frequency domain

Inserting the decomposition above we arrive at the Vlasov equation

2 2

Ry (P)ef O (Q — 1w, e~/ (Be) — ; &I
;al 1 (r)e ( s)€ ZEC’ o qubfo

Z H(Q — pwg) e @Pwo)2/(Be) 7(Q) — puyy)e™ 428/ (Be)

p——oo

and we finally obtain

62

l//
%/: ajr Rl” (Q L l//ws) — 6ET2 Sln Q§ fO

> Z H(Q — pug )t E=Pw0)2/(B) 7(Q) — puy) .

p=—00
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Some standard algrebra (multiply, integrate and use orthonormality) immediately
yields:

Vlasov eq. — 1-dimensional systent
Step #3b: frequency domain

2

BET2 W

(Q lws)alRl( ) fO Z /d¢ sing e~ ilp+iw’ (r cos ¢) /(Bc) ( )Z(W)

pP——0CO

CE?W
\

Nyl

0
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Some standard algrebra (multiply, integrate and use orthonormality) immediately
yields:

Vlasov eq. — 1-dimensional systent
Step #3b: frequency domain

2 (©.@)

Y [ 6 sin gt 069 ) 2

=—00\_ _/
v

‘”EJZ(BJ

(Q lws)alRl( ) BETQ 0

CE?W
\

Nyl
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Vlasov eq. — 1-dimensional system®™

Step #3b: frequency domain

Some standard algrebra (multiply, integrate and use orthonormality) immediately
yields:

e’ nc

a ZBETOQ Wi

(Q o lws)alRl(r) fé Z /d¢ Sinqbe—ilqﬁ—l—iw/(r cos Qb)/(BC)ﬁ(w/)Z(w/)

p=—00

Next, we perform the "inverse projection” of p(w’) (details in Chao eq. 6.75):

0
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Some standard algrebra (multiply, integrate and use orthonormality) immediately
yields:

Vlasov eq. — 1-dimensional syste
Step #3b: frequency domain

2

BET2 W

(Q lws)alRl( ) fO Z /d¢ sing e~ ilp+iw’ (r cos ¢) /(Bc) ( )Z(W)

pP——0CC0

Next, we perform the "inverse projection” of p(w’) (details in Chao eq. 6.75):

2 /
(Q - lws)ale(T) = —27riﬁc;T2l{aO Z/T’ dr’ OLz/Rz/(’r’)il_l

£ (2% (2)

p=——0CC

CE?W
\
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Vlasov eq. — 1-dimensional syste
Step #3b: frequency domain

Next, we perform the "inverse projection” of p(w’) (details in Chao eq. 6.75):

2 /
(Q — lws)a Ry (r) = _gmﬁcEfﬁTz ZJ;o 3 / o dr ap Ry ()i
0 1/
= wr\ Z(w') w'r!
J | — Ji
<2 l(ﬁc> W l(&:)

We now need to find appropriate decompositions for R;(7):
r-decomposition

Rl (T‘) = W(T) Z bklukl(r)
k

/rdr W (r)ug (r)ug (r) = Opge Oy

~

CE?W
\

Nyl

>
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Before inserting our decomposition, we define ourselves the weight function W (r) as

ws folr)
NnBc r

Vlasov eq. — 1-dimensional syste

Step #3c: r decomposition of f1

All decompositions and orthonormality conditions from the previous slide must then be

selected with respect to this weight function. In practice, this is a non-trivial task but,

for now, we will pragmatically assume that this can be done.

Inserting the r-decomposition, with the weight function as defined above, we obtain:

NnB2c2 2
ws ET¢

X ZZ/T d?“ CLl/W )bk/l/uk/l/( ) =V
- w'r\ Z(w') w'r
) _Z : (56) w' o ( Be ) 3/64

(2 = lws )W Zbk”luk”l — 271 LW (1)




i

Vlasov eq. — 1-dimensional systent

Step #3c: r decomposition of f1

Again, by standard algebraic manipulations, we multiply and integrate by f rdr ug (r).
Making use of the orthonormality conditions we arrive at

N C Ik
(Q lws)al bkl = 271 776 ET2 [ S‘ S‘ S‘al/ bk’l’ 1

Ws p=—oo Kk’ U
X /rer(r)ukl( )J; (%:)
y Z (W)
w/

!../
X /r’ dr' W (r"ugry (r") Ty (wﬁr )
c

CE?W
\

Nyl

0
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Vlasov eq. — 1-dimensional systent

Step #3c: r decomposition of f1

Again, by standard algebraic manipulations, we multiply and integrate by f rdr ug (r).
Making use of the orthonormality conditions we arrive at

N C Ik
(Q lws)al bkl = 271 776 ET2 [ S‘ S‘S‘al/ bk’l’ 1

Ws
p—_oo k/ /
X /rdr W (r)ug (r)J; (w T)
\L_ fe /
Z(w Y
X fj) Vgt (W)
! .7
X /r’ dr' W (r"ugry (r") Ty (wﬁr )
< 7,
v
vk/l/(w’)

CE?W
\

Nyl

0
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Vlasov eq. — 1-dimensional systent

Step #4: formulate eigenvalue problem

We write the previous equation as

NnB?c? /
(Q —lws)ag by = 2mi b ET2 ZZ Zal/ by it

Ws

oo
Z(w'
X Z vkl(w’) (/ )vk/l/(w’)
W
= ZZCLZ/ brrir Mgk 1
/ /

with the interation matrix M/ ;7 given as

Nnp*c? = Z (')
Mkk’ A= = 271 . ET2 Z ’U]d ) i ’Uk/l/(w/)
p—=—00

CE?W
\

Nyl

%
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Vlasov eq. — 1-dimensional system™

Step #4: formulate eigenvalue problem

We have finally arrived at a linear set of equations

(Q —lws)ag by = Z Z ay by M

Ko
With
M 1 = lwsOgrr 01 + Mpwr v
this can be written as
(Q 1— M) v=20,

a classical eigenvalue problem. We must, therefore, diagonalise the matrix M by solv-
Ing the secular equation

det(Ql—M) =0

to find the eigenvalues and the corresponding eigenvectors.

CE?W
\

Nyl

0
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Discussion of the EV problem i

For a non-trivial solution to exist, the eigenvalues must satisfy
det((ﬂ — lws) Okpr O — Mkk/,ll’) =0

So how do we solve a stability problem? The steps will always be the same:

 Typically, we will start off from a particle distribution function together with an
Impedance.

« We construct our weight function W () from the unperturbed stationary solution
fo(r) and find the corresponding basis functions u;(r) which we can then use
to compute vy, (1) and the interaction matrix Mgy /.

« If for a given choice of basis functions wuy;(7) the interaction matrix turns out
to be diagonal, the problem is readily solved. Otherwise, the matrix needs to
be diagonalised. This will yield the eigenvalues and eigenvectors for each £, [-

mode.
&) | &~
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A simple picture of the modes &

Let’'s assume an airbag distribution by assuming a weight function

1

T3

Wir) = o(r—2),

so the radial part of the perturbation becomes
Ry(r) occo(r — 2).

There are infinite azimuthal modes, each mode resembling a particular stationary oscil-
lation. Assuming for now N = 0, the zero intensity limit, it follows that the eingenvalue

IS readily obtained as
() = lw,

and we can immediately write down the perturbation as

(0] (7“, ¢) X 5(r — 2)6“¢6—ilwss/(6c)

CETQW
\

Nyl

0
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A simple picture of the modes

Le

{=o0 JL
SOQ:1 /\\ /\ /(\/
- N I\
|atie 10

IS readily obtained as

ming a weight function

= lw,

and we can immediately write down the perturbation as

C
\

E/RW

N g

0
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1 (r, @) ox (1 — 2)ellPeilwss/(Be)
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ode resembling a particular stationary oscil-
ntensity limit, it follows that the eingenvalue
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A simple picture of the modes &

Le[ m=0 ming a weight function

2. (m=0 and |=2)

SOQ:1 /\\ /\ /(\ /\ es
J

Th 1
Iattm
IS readily obtaing -

3
8

and we can immn
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e
Tune shift and instabilities

Let’s take a look at the general structure of the eigenvalue problem and try to identify
some particular cases. We express the eigenvalue problem as

- l (5 / !/ — 2 1]/
(ws ) kk’ 11 Uy . pzoo Ukl )

(w) o i g (w)

 For low intensities, we can fix the
azimuthal mode number |

« Each mode | will have rays of
radial modes shifting linearly with
the intensity
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Tune shift and instabilities

Let’s take a look at the general structure of the eigenvalue problem and try to identify
some particular cases. We express the eigenvalue problem as

Vi1’ (w’)
[

w')
(w)

() NnB*c € iy Z(

— — ) dprr g = 2 [
(ws )kk =2 3 :
b

 For low intensities, we can fix the
azimuthal mode number |

w) x 1 g (w)

« Each mode | will have rays of
radial modes shifting linearly with
the intensity

ethy (@), Im )/

« The tune shift is given by the
overlap integral of the imaginary
part of the impedance with the
mode power spectrum.
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Tune shift and instabilities '('

Let’s take a look at the general structure of the eigenvalue problem and try to identify
some particular cases. We express the eigenvalue problem as

« For high intensities, azimuthal
modes can couple. The azimuthal
mode number can no longer be
treatet as a constant but becomes
part of the interaction matrix

« The tune shift with intensity is no
longer linear. When the azimuthal
modes couple, the eigenvalues
become imaginary and the beam
becomes unstable. This is know as
the mode coupling or microwave or
turbulent instability

S — perturbation formalism 61/64
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Instabilities measurements

Initialising a matched bunch at low
intensity, two regimes are found

Bunch lengthening/emittance blow
up regime with linear increase of
the bunch length as a function of
the bunch intensity

Unstable regime (turbulent bunch
lengthening)

0

E/RW

N g

January 2015

YEARS /ANS CERN

ot

Potential Well I Microwave
Bunch Lengthening | Instability
regime | regime
[ | I
0.28 | I
5 026 | |
o= /
3 1
50241 1/
: /
E )22 i
e el I
0.5 1 I 15 2

Mode coupling threshold which we will discuss
after having introduced the transvers plane
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Instabilities measurements %

(UL

« Examples of numerical simulations of a debunching bunch with an SPS impedance

model

 The microwave instability on a debunching bunch is used at the SPS for probing the
machine impedance (E. Shaposhnikova, T. Bohl, H. Timko, et al.)

e Spectrum of bunch profile reveals important components for the impedance

2e-3 2e-3
Be-4 Be-4
= =
£ 0e0 2 0e0
o a
© ©
-8e-4 -Be-4
-2e-3 -2e-3
-150 -10.0 -5.0 0.0 5.0 10.0 15.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0
z[m] z [m]
200 turns 400 turns
2e-3 2e-3
Be-4 Be-4
= =
L 0e0 2 0e0
o o
© ©
-8e-4 -8e-4
-2e-3 F -2e-3
-150 -10.0 -5.0 0.0 5.0 10.0 15.0 -15.0  -10.0 -5.0 0.0 5.0 10.0 15.0
z [m] z[m]

| O
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50 00 50 100 150
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« Before studying some consequence of the EV problem, we
will now add the transverse plane, thus, moving to the 2-
dimensional problem.

Some remarks on the EV problem

January 2015 USPAS — perturbation formalism 64/64



[0
Summary 5 ~

 \WWe have reviewed some basic Hamilton mechanics and obained the
Vlasov equation

* We have introduced a collective part of the Hamiltonian that describes
the interaction with wakefields

* This directly lead to the potential well distortion of the stationary solution

 We have introduced a perturbation on the stationary solution and used
the Vlasov equation to obtain a system of equations that describes the
time evolution of this perturbation

 After a lengthy set of algebraic manipulations we derived the interaction
matrix and its implications on the complex tuneshift

- We identified intrabunch modes
- We identified how modes interact with impedances to generate tune shifts
- We identified how modes can couple to generate instabilities

0
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THE END
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