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What we have learned yersterday
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Some remarks on the EV problem

● Before studying some consequence of the EV problem, we 
will now add the transverse plane, thus, moving to the 2-
dimensional problem.
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Vlasov eq. – 2-dimensional system
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Vlasov eq. – 2-dimensional system
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Vlasov eq. – 2-dimensional system

We now need to 
evaluate the two 
Poisson brackets 
using the distribution 
functions and the 
Hamiltonians we 
have developed
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Vlasov eq. – 2-dimensional system
Step #1: evaluate first Poisson bracketStep #1: evaluate first Poisson bracket
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Vlasov eq. – 2-dimensional system
Step #1: evaluate first Poisson bracketStep #1: evaluate first Poisson bracket
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Vlasov eq. – 2-dimensional system
Step #1: evaluate first Poisson bracketStep #1: evaluate first Poisson bracket

Why did we not perform the 
transformation on the Hamiltonian 
directly but instead only transform 
after the evaluation of the Poisson 
brackets?
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Vlasov eq. – 2-dimensional system
Step #2: evaluate second Poisson bracketStep #2: evaluate second Poisson bracket
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Vlasov eq. – 2-dimensional system
Step #2: evaluate second Poisson bracketStep #2: evaluate second Poisson bracket

negligible in practice (s. Ex 6.18)
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Vlasov eq. – 2-dimensional system
Step #2: evaluate second Poisson bracketStep #2: evaluate second Poisson bracket
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Vlasov eq. – 2-dimensional system
Step #2: evaluate second Poisson bracketStep #2: evaluate second Poisson bracket
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Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension
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Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension

Longitudinal structure    |    Transverse structure
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Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension

Longitudinal structure    |    Transverse structure

Separable –
Fourier decompositions
in angles
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Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension

Longitudinal structure    |    Transverse structure

Simple transverse structure
(dipolar)



January 2015 USPAS – perturbation formalism 19/76

Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension

Longitudinal structure    |    Transverse structure

Simple transverse structure
(dipolar)

Much more complicated
longitudinal structure
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Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension
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Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension

we include chromatic 
effects (another coupling 
from longitudinal to 
transverse):
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Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension
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Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension

Very similar to what we had 
earlier, now, with a 
coefficient that will pull the 
chromatic dependence in the 
eigenvalues up into the 
phase of the eigenvectors – 
this will have important 
consequences and manifest 
into the slow headtail 
instabilities
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Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension
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Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension



January 2015 USPAS – perturbation formalism 26/76

Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension
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Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension
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Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension
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Vlasov eq. – 2-dimensional system
Step #3: factorize transverse dimensionStep #3: factorize transverse dimension
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Step #4: formulate eigenvalue problemStep #4: formulate eigenvalue problem

Vlasov eq. – 2-dimensional system
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Vlasov eq. – 2-dimensional system
Step #4: formulate eigenvalue problemStep #4: formulate eigenvalue problem
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Some remarks on the EV problem



January 2015 USPAS – perturbation formalism 34/76

Discussion of the EV problem
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Discussion of the EV problem
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Discussion of the EV problem
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Slow headtail vs. fast headtail
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Slow headtail vs. fast headtail

Mode frequencies vs intensity parameter of a 
parabolic beam in the presence of a resistive wall 
impedance 
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Slow headtail vs. fast headtail

Mode frequencies vs. intensity parameter 
from an airbag beam. The solid line shows 
the tune shift. The dashed line indicates the 
rise time.
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Slow headtail and effect. impedance
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Slow headtail and effect. impedance

Important feature – 
not present in the 
longitudinal case
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Slow headtail and effect. impedance
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Slow headtail and effect. impedance
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Slow headtail and effect. impedance
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Slow headtail and effect. impedance

Look at the power spectrum and it's 
dependency on the slippage factor. What 
are the chromaticity settings you would 
preferably use in a machine operating 
below/above transition?
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Slow headtail and effect. impedance

Look at the power spectrum and it's 
dependency on the slippage factor. What 
are the chromaticity settings you would 
preferably use in a machine operating 
below/above transition?
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Another simple example
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Another simple example
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Simulation results
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Simulation results

dipolar kick
(target)

dipolar dependence
(source)
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Simulation results – headtail modes

● Resistive wall wake 
– narrow band

● Consider negative 
real part of Z

● Exitation of single 
modes

Mode 1
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Simulation results – headtail modes
Mode 1

Mode 2

● Resistive wall wake 
– narrow band

● Consider negative 
real part of Z

● Exitation of single 
modes



January 2015 USPAS – perturbation formalism 59/76

Simulation results – headtail modes
Mode 1

Mode 2

Mode 3

● Resistive wall wake 
– narrow band

● Consider negative 
real part of Z

● Exitation of single 
modes
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Simulation results – headtail modes
Mode 1

Mode 2

Mode 3

Mode 4

● Resistive wall wake 
– narrow band

● Consider negative 
real part of Z

● Exitation of single 
modes
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Simulation results – headtail modes
Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

● Resistive wall wake 
– narrow band

● Consider negative 
real part of Z

● Exitation of single 
modes
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Simulation results – headtail modes
Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

● Resistive wall wake 
– narrow band

● Consider negative 
real part of Z

● Exitation of single 
modes
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Impedance model: intra-bunch motion

ξ = -0.04
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Impedance model: intra-bunch motion

ξ = -0.14
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Impedance model: intra-bunch motion

ξ = -0.34
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Impedance model: intra-bunch motion

ξ = -0.54
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Impedance model: intra-bunch motion

ξ = -0.74



January 2015 USPAS – perturbation formalism 68/76

Impedance model: intra-bunch motion

ξ = -0.84
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Impedance model: intra-bunch motion

ξ = -0.94
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Simulation results – TMCI

● Full LHC impedance model

– Vacuum pipes

– Beam screens

– Collimators

– Broadband model

● Intensity scan with:

– PyHEADTAIL (time domain)

– DELPHI (frequency domain)

● Excitation of several modes – 
coupling
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Simulation results – TMCI

● Full LHC impedance model

– Vacuum pipes

– Beam screens

– Collimators

– Broadband model

● Intensity scan with:

– PyHEADTAIL (time domain)

– DELPHI (frequency domain)

● Excitation of several modes – 
coupling
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● Two regimes of instability in measurements

● Fast instability threshold with linear dependence on εl

● Slow instability for intermediate intensity and low εl

● Very well reproduced with HEADTAIL simulations

● SPS impedance model includes kickers, wall, BPMs and RF cavities

● Direct space charge not included 

72

measurements HEADTAIL simulations

4.5x1011 p/b 
@ 0.35 eVs

nominal Island of slow 
instability

Benchmark of the SPS transverse impedance 
model: TMCI thresholds
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SPS impedance modelBroadband resonator model

Benchmark of the SPS transverse impedance 
model: TMCI thresholds

Slow instability
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SPS impedance modelBroadband resonator model

Benchmark of the SPS transverse impedance 
model: TMCI thresholds

Slow instability
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75

measurements HEADTAIL simulations

4.5x1011 p/b 
@ 0.35 eVs

nominal Island of slow 
instability

Benchmark of the SPS transverse impedance model: 
TMCI thresholds
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76

measurements HEADTAIL simulations

4.5x1011 p/b 
@ 0.35 eVs

nominal Island of slow 
instability

Benchmark of the SPS transverse impedance model: 
TMCI thresholds



January 2015 USPAS – perturbation formalism 77/76

TMCI threshold vs. Qs
● By changing the optics to reduce the transition energy, we can increase the 

synchrotron tune and by this significantly the instability limit threshold.

● This has been deployed in the SPS where the slippage factor was raised from 
(Q26) to (Q20) increasing the instability thereshold by a factor
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Effect of incoherent tune spread
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Vlasov eq. – 2-dimensional system
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Vlasov eq. – 2-dimensional system

What has changed?

What was originally the eigenvalue, resulting in a 
linear EV problem, gets now drawn into the integral.
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Vlasov eq. – 2-dimensional system
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Vlasov eq. – 2-dimensional system
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THE END
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