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What we have learned yersterday

A multi-particle system is well described by the single particle probability density
function ¢ (q, p).

Given a pdf 1(q, p) and a Hamiltonian H (¢, p), the evolution of v is given by the
Poisson bracket 051 = [H, 1)].

The zeroth order effect of the collective term of the Hamiltonian leads to a sta-
tionary distortion of the unperturbed stationar distribution. This is the potential
well distortion.

The remaining part of the collective term leads to a complex tune shift of the
coherent mode described by the interaction matrix.

The value of the complex tune shift together with the associated collective modes
is obtained from the diagonalisation of the interaction matrix.

Two regimes could be identified. The potential well distortion leads to a sta-
tionary bunch shortening or bunch lengthening. The turbulent regime leads to
instabilitiers,
instabiltierg
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« Before studying some consequence of the EV problem, we
will now add the transverse plane, thus, moving to the 2-
dimensional problem.

Some remarks on the EV problem
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Vlasov eq. — 2-dimensional system™

We immediately start with the Vlasov equation which expresses the time evolution of
a small perturbation )1 ontop of an equilibrium distribution 1)y due to collective effects
described by the Hamiltonain Hy (1)

Ost1 = [Ho, 1] + [H1(v1), o] -

We, then, consider the combined transverse and longitudinal Hamiltonians?

1 Q.,\" 1 1 (ws\?

2 R 2 2n \ Bc
H. H
2 n
(mn) € Yy
Hy = 52E0/dy a1 V)

Vinn(2) = /dz' Z p(m>(z’)e_m(s/(ﬁc)_k%)Wmn(z — 2" — k)

k=—o0

2We focus here on one of the two transverse planes only. The second will be equivalent in its treatment.
AN e January 2015 USPAS — perturbation formalism 4/76

YEARS /ANS CERN



Vlasov eq. — 2-dimensional syste

Again, we search for stationary solutions, in the broader sense, given as
()
be

Furthermore, with the Hamiltonians satifying the relations

33%01 = —1 ¢1 .

° [HJ_, H“] =
we can specify the solution as
V(Ys Py, 2,0) = Yo(Y, Py, 2,0) + V1(Y, Dy, 2,90)

— ho(yapya 2 5) + hy (y,py, 2y 5)6
— go(y,py)fo(z, 5) + g1 (yapy)fl (Za 5)6—2'(25/(&:) .

—if2s/(fBc)

CETQW
\
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Vlasov eq. — 2-dimensional system™

We immediately start with the Vlasov equation which expresses the time evolution of
a small perturbation )1 ontop of an equilibrium distribution 1)y due to collective effects

described by the Hamiltonain H1 (1)

Osp1 =||Ho, 1]+

H1 (Y1), Yol

w(yapya <y 6) — go(yvpy)f()(z? 5)

_|_

g1 (yapy)fl (Z, 5)6

—if2s/(Bc)

We, then, consider the combined transverse and longitudinal Hamiltonians

1 Qy22 1o 1 w822
Ho—§py+<§>y—§775—% 5c) *

2 n
(mn) _ € 9
i = pe / dy "oy Vi (2)

We now need to
evaluate the two
Poisson brackets
using the distribution
functions and the
Hamiltonians we
have developed

Vinn(2) = /dz’ Z p\m) (2 e~ U/ (Be)=kTo)yyy (2 — 2" — keTp)

k=—o0

A
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Vlasov eq. — 2-dimensional system®™

Step #1: evaluate first Poisson bracket

Given the form of the Hamiltonians H, and H), it will be helpful to move to action-
angle variables and to polar coordinates, respectively:

) = ngfcos@, Jy=%<%y2+%p§> » gy:%éya§y+g_§%
— 2J§{Qy sinf, ¢ = arctan (-Q%%) , 8; = g;z 68Jy - %%
Z=1TCcos o, T\/22+<n¢ic)262’ gz:g:«;r+%%
=g, pmaman (D), 222, 200

\/ January 2015
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Vlasov eq. — 2-dimensional syste

Step #1: evaluate first Poisson bracket

The Poisson bracket becomes:

B Q,\° 9 ¢ 0fy  (ws\> z0f1
[Ho,%] — <f1 <(Ry> ya—py py@y) + (91 <77582 — (@) 77({%))
w ¢~/ (Be)

_ <_f1 Qy g1 Ws afl) 6_2'93/(56)

———— — g — —

R 90 7 3c 0o

0

CE?W
\
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| | U4
Vlasov eq. — 2-dimensional system®™

Step #1: evaluate first Poisson bracket

The Poisson bracket becomes:

B Q,\° 9 ¢ 0fy  (ws\> z0f1
[H07¢1] — <f1 ((}{y) ya—py py@y) + (91 <7758Z — (@) 77(,%))
« ¢~/ (Be)

(@00 wsOf1\ _ias/(se)
_< "R a0 "N a0 )€

Why did we not perform the
transformation on the Hamiltonian
directly but instead only transform
after the evaluation of the Poisson
brackets?

0

CE?W
\

Nyl
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Vlasov eq. — 2-dimensional system“h""

Step #2: evaluate second Poisson bracket

The Poisson bracket becomes:

o % ’ % B % afl Ws Zafl
X e—if28/(50)
_ [ QuOgt W Of1 _ias/(se)
_<f1Ry89 915 8qb)6
Because |Hy + H1(10),%0] = 0 it follows that go(y,py) = go(Jy) and fo(2,9) =

fo(r). Then, the second Poisson bracket evaluates to

8H1 890 4 8H1 (9f0
Oy Op, N5 08

e? [2J,R nBec . ) y™ 0
BQEC fo 0, sin 6 g, —V( ) o /d H&V( ))

7\ | voamesans cern January 2015 USPAS — perturbation formalism 11/76
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Vlasov eq. — 2-dimensional system™"*

Step #2: evaluate second Poisson bracket

The Poisson bracket becomes:
_ Q) 90 Og 0fi _ (ws\"z0h
X e_iQS/(BC)

_ [ QuOgt W Of1 _ias/(se)
_< "R o0 "N a0 )€

Because [Hy + Hi(v0), 0| = 0 it follows that go(y,p,) = go(Jy) and fo(z,0) =
fo(r). Then, the second Poisson bracket evaluates to

8H1 890 8H1 8f0

[H1, 0] = fo 5 o, + g0 YT negligible in practice (s. Ex 6.18)
e? 2J,R . , Yy
— PEC (fo 2, sin 4 g;, FV(Z)

N | voameans cern January 2015 USPAS — perturbation46rmalism
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Vlasov eq. — 2-dimensional syste

Step #2: evaluate second Poisson bracket

We then write the Vlasov equation with the evaluated Poisson brackets as

Q _iQs)(Be) Qy 091 ws 01\ _ias/(8e)
Zﬁcflgle — J1 R 00 9150 By, €
e’ 2J,R . , Y
+ 62ECfO Q, Smegom
x V(z)

CE?W
\

Nyl
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Vlasov eq. — 2-dimensional syste

Step #2: evaluate second Poisson bracket

We then write the Vlasov equation with the evaluated Poisson brackets as

S ias/Be) _ [ Qw091 wWs Of1 _ias/(se)
Zﬁcflgle — flR 90 9156 Y. €

N e 2J,R .~ ,y"

X /dz’ Z p\m) (2 e~ MU/ (BO=KTO) (2 — 2 — keTy)

k=—00

» This looks a lot more complicated than its longitudinal countepart. What will
save us, here, is that we restrict ourselves to purely dipolar transverse motion
(i.e. m=1, n=0)

 This will enable us to factor out the transverse dimension from the Vlasov equa-
tion and reduce the problem to nearly the same one that has already been solved
for the longitudinal plane. | 1176

Ve
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Vlasov eq. — 2-dimensional syste

Step #3: factorize transverse dimension

Fixing m=1 and n=0, we rewrite the Vlasov equation as

8 issBe) (o @y 091 ws 01 ias/(se)
Zﬁcflgle — flR 90 9150 96 €

e? 2JyR
25c 0
5 Qy

X /dz’ Z pW (2 e~ 8/ Be) kDo) 7 (2 — 2/ — keTy)

k=—o0

sin 6 g,

_|_

 Let’s pause a minute to try and understand some of the structure of the equation
above.

CE?W
\

Nyl
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Vlasov eq. — 2-dimensional syste

Step #3: factorize transverse dimension

Fixing m=1 and n=0, we rewrite the Vlasov equation as

0 —iQs/(Be) _ Qy 891 s afl —iQs/(Bc)
Zﬁcfl'gl'e — 1 R 90 '9166 96 €
e? 2J,R .
+62E0‘f0\/ ny sin 6 gy,
X /dz’ Z p V(2" e 8/ B =kTO) Wy (2 — 2/ — keTy)
k=—ocg
Longitudinal structure | Transverse structure

cﬁw
\
X/

\/ January 2015 16/76
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Vlasov eq. — 2-dimensional syste

Step #3: factorize transverse dimension

Fixing m=1 and n=0, we rewrite the Vlasov equation as

0 —iQs/(Be) _ Qy 891 W 8f1 —iQs/(Bc)
i— 11 — 1 R (a0 91 Bclod €
Separable -

e? \/QJyR , , Fourier decompositions
sin 6 g

0 in angles

X /dz’ Z p V(2 e U/ (BO=FIOW, (2 — 2/ — keTp)

Longitudinal structure | Transverse structure

\/ January 2015 17/76
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Vlasov eq. — 2-dimensional syste

Step #3: factorize transverse dimension

Fixing m=1 and n=0, we rewrite the Vlasov equation as

R L —inssse) (| |Dyf091) | |ws PI —is/(se)
i——If1le — flR 90 '9156 96 €

€2 2J,R
el

X /dz’ Z (z’)e_iﬁ(s/(ﬁc)_ch’)Wl(z — 2" — kcTy)

k=—00

Simple transverse structure

+ sin 6 g(’) (dipolar)

Longitudinal structure | Transverse structure

\/ January 2015 18/76
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Vlasov eq. — 2-dimensional syste

Step #3: factorize transverse dimension

Fixing m=1 and n=0, we rewrite the Vlasov equation as
i3l lemis/ e AR Qy(0 91 2 PIL)) e-iesrso
Be Be\o

Simple transverse structure
" 2J,R sin0 gl (dipolar)
62E
X@ (Z/>6—iQ(S/(50)—kTo)W1 (Z B Z/@

Much more complicated
longitudinal structure

Longitudinal structure | Transverse structure

\/ January 2015 [ [ 19/76
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Vlasov eq. — 2-dimensional syste

Step #3: factorize transverse dimension

Fixing m=1 and n=0, we rewrite the Vlasov equation as

0 —iQs/(Be) _ Qy 891 W afl —iQs/(Bc)
Zﬁcflgle — J1 R 90 9150 96 €
e? 2J,R .
Yootk ny sin 6 g
X /dz’ Z pW (2 e~ 8/ Be)=kTo) 7 (2 — 2/ — keTy)
k=—o0

» Before moving on, let’s allow for another minor subtlety

CE?W
\

Nyl
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Vlasov eq. — 2-dimensional system™

Step #3: factorize transverse dimension

Fixing m=1 and n=0, we rewrite the Vlasov equation as

Q —18)s c 0 wsa —iQs c
it g g emifs/(8e) <_f 91 _i)e Qs/(Be)

Be "R 06 7' Bc oo
we include chromatic 62 2JyR 0.
effects (another coupling '
from longitudinal to i 52EC fo Qy T
transverse): ~
Qy _ Qyo T Q:’y(S « /dZ/ Z p(l)(Z/>6—7LQ(S/(5C)—kTo)W1 (Z _ ]CCT())
k=—o0

» Before moving on, let’s allow for another minor subtlety

0

CE?W
\

Nyl
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Vlasov eq. — 2-dimensional syste

Step #3: factorize transverse dimension

We now introduce the following decompositions

Comparing with the RHS of the Vlasov equation, it can be shown that
R1)=0, Vk\{-1,1
gl ( y) - Y \ { ) }
The k = —1 solution can be neglected assuming |2 — w, | < |2 + w,,|. Hence,

g1(Jy,0) = g(Jy) e .

And

Fi(r, ¢) = 0iQy 2/ (nR) Z a Ry (r)e’®
[

CE?W
\

Nyl

0
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Vlasov eq. — 2-dimensional system™

Step #3: factorize transverse dimension

We now introduce the following decompositions

y7¢ Zgl zk@

Comparing with the RHS of the Vlasov equation, it can be shown that

gM(1,) =0, VE\{-1,1}

The k = —1 solution can be neglected assuming |2 — w,,| < |£2 + w,|. Hence,
_ Very similar to what we had
g1 (Jw 9) — g(Jy) et earlier, now, with a

coefficient that will pull the
chromatic dependence in the

And eigenvalues up into the
1Qy,z/(nR il¢ | phase of the eigenvectors —
fi(r; ¢) ¢ at(r)et | B o e important

L consequences and manifest
CERN A into  the slow headtail
\/W/ \/ instabilities
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Vlasov eq. — 2-dimensional syste

Step #3: factorize transverse dimension

Inserting the decompositions above we arrive at the Vlasov equation

2
Z a’l”Rl” (’I“)eil”qb Q(Jy)(Q _ wy() _ l//ws) 6_7;98/(60) — €c fO e—iQ;Z/(nR)

177 g(/)(Jy) 2Jy R 26EC

X /dz’ Z P (2)e MU/ (BO=FTO W, (5 — 2/ — kcTy)

k=—0o0

CE?W
\

Nyl

0

January 2015 USPAS - perturbation formalism 24/76

YEARS /ANS CERN



1

Vlasov eq. — 2-dimensional syste

Step #3: factorize transverse dimension

Inserting the decompositions above we arrive at the Vlasov equation

2
Z apn Ry (T)eil”gb g(Jy)(Q — Wy0 — l/IWS) e—iQs/(Bc) _ e C fO e—iQ;z/(nR)

AEANE T 265G

\ Qy
e

l//

Q(Jy)
9(,)(Jy)\/ Qggny

X /dz’ Z p) (2)e MU/ (BO=KTO W, (5 — 2/ — keTy)

k=—00

=D

constant in J,, therefore

CE?W
\

Nyl

0
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Vlasov eq. — 2-dimensional syste

Step #3: factorize transverse dimension

Inserting the decompositions above we arrive at the Vlasov equation

2
o oyite 9y (= wyo = ws) iagype) _ _€7C —iQ! 2/(nR)
2 arBu(r)e (1. PR = 23EC 10¢
90(Jy)

\ Qy
e

gé(Jy)\/ Qggny

> /dZ, Z \,0(1) (Z/)f—iQ(s/(Bc)—k:To)Wl (Z o kCT())
Y

constant in J,, therefore

k=—00
dJ, df g(J,)e? y R [dJ,g((Jy)J R
o () = LB BTy oy p BT Dy ) p Ry
J dJydb go(Jy) Qyo [ dJygo(Jy) Qyo
<
CERN A
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Vlasov eq. — 2-dimensional syste

Step #3: factorize transverse dimension

We get to

e’ ¢

2EC Wy0

Z ap Ry (1)l ¢ (Q — wyo — 1w )e 8/ (Be) — o e 12/ (nR)

l//

X /dz' Z p(2) e BHs/B)=KTOVY, (5 — 2/ — keTy)

k=—o0

We have eliminated all dependencies on the transverse distribution functions and have
arrived at the equivalent problem that we had already encountered during the longitu-
dinal studies! Note that this was possible due to some certain assumptions we made,
such as restricting our study to purely dipolar wakefield problems.

0

CE?W
\

Nyl
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Vlasov eq. — 2-dimensional system®™

Step #3: factorize transverse dimension

We get to

e’ ¢

Z ayr Ry (r)eil ¢ (Q —wyo — l”ws)e_m‘g/(ﬂc) — YEC oy

l//

Fy e—iQyz/(nR)

X /dz' Z p(2) e BHs/B)=KTOVY, (5 — 2/ — keTy)

k=—o0
We can at this stage follow the identical steps made for the longitudinal plane

* Move to frequency domain via the impedance involving the Poisson summation
formula

« Multiply, integrate and use orthonormality of eile

 Using the inverse projection of the distribution function

o | &
January 2015
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Vlasov eq. — 2-dimensional systent

Step #3: factorize transverse dimension

We get to
. 7T€2w3 NERU
(2 —wyo — lws)ay Ry (1) = _zn52ET2w ) fo Z/r’ dr’ ay Ry (r')it ™!
oy I/
o0 w/,r Q/ 07,, w/,r/ / 0,,,,/
J - Y ZJ_ / I o Y 1
szool(ﬁc nR) 1(w)l<ﬁc nR>

Next, we perform the r-decomposition and introduce the weight function
+ Ry(r) = W("“) 2, Dk (1)

» W(r) == fo(r)

Nnc

- We multiply and integrate by [ r dr ux;(r) and make use of the orthonormality
conditions

W' =Q = pwo — pwo + wyo 1 lws R _JI76
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Vlasov eq. — 2-dimensional syste

Step #4: formulate eigenvalue problem

We write the previous equation as

. wNe?c g
(Q — Wyo — lws)albkl = Z Z al/bk/l/ Zl :

—1
2 2
5 ETO wyo L’ 1’

X Z Vet (W' — we) Z7 (W) vprp (W — we)

p=—00

:E E ay by Mgk e

kU

with the interation matrix M ;7 given as

. TNe’c -1 . / Ly / 1
Mg r = _Z62ET2w X i Z Vil(W — we) 27 (W) v (W' — we)
0 Wy

we = Quwo/n 30/76
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Vlasov eq. — 2-dimensional system®™

Step #4: formulate eigenvalue problem

We have finally arrived at a linear set of equations

(Q — wyo — lws)ar b = > ap b Mg -
Y
With
Miger i = lws0kk' o + Migr v

this can be written as
((Q—wyo)l—M)v:O,

a classical eigenvalue problem. We must, therefore, diagonalise the matrix M by solv-
ing the secular equation

det (92— wyo) 1= M) =0

to find the ek;%nvalues and the corresponding eigenvectors.

CEKN \/

\
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Some remarks on the EV problem“h

« The interaction matrix characterises the interaction of the basis functions
with the impedance. The choice of basis functions is, in principle, arbi-
trary and will yield the same set of eigenvalues and eigenvectors while
simply making the diagonalisation of the interaction matrix more or less
tedious. The choices made here, with imposing the orthonormality con-
ditions, were simply in order to obtain a symmetric form of the interaction
maitrix and to pre-solve the appearing integrals.

« The Vlasov solver DELPHI, for example, uses Laguerre polynomials for
the expansion. Those correspond to the ug; eigenvectors for Gaussian
probability desity functions. Moreover, they can also be used for other
distributions resulting, however, in more complicated integrals which can,
nevertheless, be computed in a closed analytical form. It then diago-
nalises the interaction matrix resulting from the interaction of the Laguerre
polynomial basis functions with the impedance.

&) | &~
January 2015 32/76
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Discussion of the EV problem

LD

Let’s take a look at the general structure of the eigenvalue problem and try to identify

some particular cases. We express the eigenvalues probem as

EFv=Mvuv
with
Q) — wyo . 7wNeée’c
B = ( =1, My = U0k i — imgmmms
Ws B2 BT wyows
k1) = vy (w') = [rdr W(r)ug(r)J; ((w _Bucj&)r>
W/K m:cm January 2015 USPAS — perturbation formalism
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Discussion of the EV problem i

Let’s take a look at the general structure of the eigenvalue problem and try to identify
some particular cases. We express the eigenvalues probem as

EFEv=Muv

with

Q — wyo TNe?c ,
E = YY1, Mo = .y UL 2 KT
( . ) - Mo =)~ i g I 21 W)
\—

4
V\ v
M
Head-Tail instability:
We neglect azimuthal mode coupling and stick to just one azimuthal
mode, i.e. [ = !’. Then, we can re-cast the constant term lw,1 into

the eigenvalue, such that £ = (2 — w0 — lws) 1.
We now just need to diagonalise M with respect to the radial modes k:

TNe3c
By ray
15 ETj; Wy0Ws

r N
\/ January 2015 USPAS — perturbation formalism 35/76
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Discussion of the EV problem *%

Let’s take a look at the general structure of the eigenvalue problem and try to identify
some particular cases. We express the eigenvalues probem as

EFEv=Mwuv
with
() — Ne? ,
B = 40 1, My =0k r — % . 26 — (kl| Zi- |K'T)
W ’ " ’ B2ETSwyows »
——
M

Mode coupling instability:

We now consider azimuthal mode coupling and stick to just the domi-
nant radial mode, i.e. k = 0. The term [w,1 is no longer constant but
becomes a part of the interaction matrix.

We now need to diagonalise the full matrix M with respect to the az-
imuthal modes :

. 7wNe’c Y
M = Low T BET?w ow iz )
0 s

Jaliualy £2vu.1lo UOorAOo — [JCILUIUdLIUIyIUIIIIdIIDIII oU/ 10

0

CE/RW
\
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Slow headtall vs. fast headtall **

Let’'s now take a look at the general form of the matrices to be diagonalised for the
previous two cases. We had

241 R 1 R 1
N e2e R 1+71 R I R
M= —1 5 5 [mkk/] y M = I R I R I
BT wyows R I R —-14I R
I R R R —2+1
. PR )
I N
Slow headtail mode: Fast headtail mode:

linear in intensity or shunt impedance — complex interplay between real (R) and imaginary
constant frequency shift for each radial (1) parts of the impedance (all R and I are dif-
mode. ferent). Off-diagonal elements are antisymmetric
(M_;—r = —M; ). Non-linear in intensity or
shunt impedance — azimuthal modes may couple!
CE/RW
/)

0
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Slow headtall vs. fast headtall

Let’'s now take a look at the general form
previous two cases. We had

2
miNe“c
M= —1 Mgk’ | , M =
B2ETEwyows [ ]
~
Slow headtail mode: Mode frequencies vs intensity parameter of a
linear in intensity or shunt impedance — parabolic beam in the presence of a resistive wall
constant frequency shift for each radial impedance
mode.
9 | &=
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Slow headtall vs. fast headtall **

eneral form of the matrices to be diagonalised for the

[ )
2+1 R I R I
R 1+1 R I R
M = I R I R I
R I R —-1+41 R
I R R R —2+1
— 2
~

Mode frequencies vs. intensity parameter Fast headtail mode:
from an airbag beam. The solid line shows  complex interplay between real (R) and imaginary

the tune shift. The dashed line indicates the (I) parts of the impedance (all R and I are dif-
rise time. ferent). Off-diagonal elements are antisymmetric
(M_;—r = —M; ). Non-linear in intensity or
shunt impedance — azimuthal modes may couple!
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Slow headtail and effect. impedanceé™

We will now look a little closer at the slow headtail modes. The interaction matrix was

given as
TNe’c

—1
2 2
B2 ET§ w,ows

M = (kl| Z+ |K'1)

The ket-vector |kl) is written explicitly as

i =) = [ ror Wi (L5207

where

w' = pwo + wyo + lws
_ Qywo

N
/r dr W (r)ug (r)ug g (r") = Spp O

A
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Slow headtail and effect. impedanceé™

We will now look a little closer at the slow headtail modes. The interaction matrix was
given as
2
nNe“c kKl Zi |K'1) Important feature —

—1
B2 ETEw,ows < not present in the
longitudinal case

M =

The ket-vector |kl) is written explicitly as

C

) = (o) = [ rdr W) ((“" “’f”) |
where

w' = pwo + wyo + lws
_ Qywo

N
/r dr W (r)ug (r)ug g (r") = Spp O

A
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Slow headtail and effect. impedanceé™

We will now look a little closer at the slow headtail modes. The interaction matrix was

given as
TNe3c
— —j kl| Z+ |K'T
M 262ET02(JJ:UOWS < | 1 | >

The ket-vector |kl) is written explicitly as

k) = (o) = [ radrwuat)s (5200

Note that "y
D (W) ~ i o (w)?.

We define the effective impedance as

Xl A W o)l

eff 00 ~(kl
S0 1Y (W — we))?

(71)

a§ee S)hao Eqg. 6.103
\ \—/\ N January 2015 USPAS — perturbation formalism 42/76
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Slow headtail and effect. impedanceé™

We define the effective impedance as

Yoo Zi (W) [ (W —we)
z;i_oor(k”( - we)l?

With the notion of the effective impedance, assuming the interaction matrix has been
diagonalised, the latter can be written as

(Zf_)eff -

o0
TNe2e

_ . 1 / 2
M= i P 2 e 0

p=—0oC

CETQW
\

Nyl
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Slow headtail and effect. impedanceé™

We define the effective impedance as
S o ZEH (W) [ (W — we) 2
00 ~(kl )
S 1A (W — we) 2

With the notion of the effective impedance, assuming the interaction matrix has been
diagonalised, the latter can be written as

(ZlJ_)eff:

o0
TNe2e

_ . 1 / 2
M= iy C (Z) g D Il —wo)

p=—00

This is a fundamental result for the slow headtail modes:

« The complex tune shift is given by the overlap integral of the impedance and the
mode power spectrum.

* Due to the chromatic shift, the mode frequency acquires an imaginary part. If

Re (Zi-efr) < 0 the beam becomes unstable.
\ \-/\ | YE"’ARS/ANS CERN January 2015 USPAS — perturbation formalism 4476
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Slow headtail and effect. impedanceé™

L

. . . . I | I 1 I | S0 B B D | L L LY L T
Considering the most prominent radial mode, assuming we have been able to diago-
nalise our matrix, we can actually compute some complex tune shifts & =

* Parabolic bunch

1 T(1+1/2) Ne2c?

Q) —wy — lws = — (Z
LTy T i/ ETowyéz( et
« Gaussian bunch
1 T(1+1/2) Ne*c*
O —wy —lwg = — ETowyazZ(Zl)eﬁ 4

47 2L

CE/RW
\

N g

0
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o0 ~(kl
5% o A (w0 — we) 2

Look at the power spectrum and it's
dependency on the slippage factor. What
are the chromaticity settings you would
preferably use in a machine operating
below/above transition?

~~
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Another simple example o

Let’'s assume an airbag distribution by assuming a weight function
W(r) = -~ 8(r - 2)
r)= r—z
272 ’

so the radial part of the perturbation becomes
Ry(r) occo(r — 2).

There are infinite azimuthal modes, each mode resembling a particular stationary oscil-
lation. Assuming for now N = 0, the zero intensity limit, it follows that the eingenvalue

IS readily obtained as
() = wyo + lws

and we can immediately write down the perturbation as
b1 o< gh(r)e?? §(r — 2)e’? 1Q' 2/ (nF) pmilwyotlws)s/(Be)
o)

Nyl
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Another simple example

Let’'s assume an airbag distribution by assuming a weight function

W(r) = ——8(r— ).

27z

so the radial parj_of the perturbation becomes
m=1

=0 L ‘-% %ﬂﬂ
There are infinite S~

lation. Assuming

is readily obtaind { - 4 CZQ:.2 @ ﬂ &> ——

and we can immj

lonary oscil-
eingenvalue

-2 RN = <
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Simulation results &

We wight aswell solve the equations in time-domain using the original Hamiltonian

1 Q. \° 1 1 (ws\”
= 2 “y 2_ Zos2_ (% 2
2py+<R) Sl 2n \ Be :

62 - —182(s c)—
52E0y /dz’ Z P (2 e~ MU/ (BO=FTOW, (2 — 2/ — keTy)

_|_

k=—o00

CETQW
\

Nyl

0
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Simulation results "‘

We wight aswell solve the equations in time-domain using the original Hamiltonian

1 2 1 1 [ w.\?
H:_p§+<%) y2__7752__(w_> 22

2 R 2 2n \ Bc
2 @)
dipolar kick dipolar dependence
(target) (source)

What we will get is a position dependent orbit offset along the bunch which will turn
out to be stationary (periodic in time). The resulting pictures are the manifestations
of the different headtail modes which are obtained directly in the frequency domain
calculations.

0

CE/RW
\

N g
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Simulation results — headtaill mo

wQ
desﬁfb

Resistive wall wake
— narrow band

Consider negative
real part of Z

Exitation of single
modes

<
CERN

S Janua

Mode 1
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0.5

0.0

[m particles]

|
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charge-weighted mean position y

|
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Simulation results — headtall modes™

Mode 1

Resistive wall wake
— narrow band

: : Mode 2
Consider negative

real part of Z

Exitation of single
modes

charge-weighted mean position y
[m particles]

<
CERN
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Simulation results — headtall mode;"b

Resistive wall wake
— narrow band

Consider negative
real part of Z

Exitation of single
modes

CERN

NS
YEARS /ANS CERN Janua

Mode 1

Mode 2

Mode 3

'y 2015

4 1e8

charge-weighted mean position y
[m particles]
o
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Simulation results — headtall mode

Mode 1
Resistive wall wake
— narrow band
: . Mode 2
Consider negative
real part of Z
Exitation of single Mode 3 N
modes 5
Mode 4 ==
5€

<
CERN
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Simulation results — headtall mode

Mode 1
Resistive wall wake
— narrow band
: . Mode 2
Consider negative
real part of Z
Exitation of single Mode 3
modes
Mode 4 *;
Mode 5 2
@
C\ERN
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Simulation results — headtall mode

Mode 1
Resistive wall wake
— narrow band
: . Mode 2
Consider negative
real part of Z
Exitation of single Mode 3
modes
Mode 4
Mode 5 §§
2
Mode 6 g
@
C\ERN
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- Intra-bunch motion

Impedance model

£ =-0.04

Simulations

2
time [ns]
Measurements

2
time [ns]
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Impedance model: intra-bunch motion  ***

X 105 Simulations £=-0.14

time [ns]
Measurements

15
10

Aﬁ time [ns]

> January 2015
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Impedance model: intra-bunch motion

YEARS /ANS CERN

£=-0.34

time [ns]
Measurements

January 2015

time [ns]
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20
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10
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20
15
10
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Impedance model: intra-bunch motion  ***

X 106 Simulations £=-0.54

time [ns]
Measurements

15
10

time [ns]
/(\
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Impedance model: intra-bunch motion ‘h

§=-0.74

Simulations

2
time [ns]
Measurements
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Impedance model: intra-bunch motion  ***

X 10’ Simulations £=-0.84

20
15
10
5

time [ns]
Measurements

15
10

time [ns]
/(\
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Simulation results — TMCI i

Full LHC impedance model
- Vacuum pipes

- Beam screens

- Collimators

- Broadband model
Intensity scan with:

- PyHEADTAIL (time domain)
- DELPHI (frequency domain)

Excitation of several modes —
coupling

0
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\
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Simulation results — TMCI

Full LH
- Vagq
- Begd
- Col
- Brg

Intensi
- Pyt
- DE

Excitat
couplin

horizontal mode number

intensity [particles]
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Benchmark of the SPS transverse impedance !"[s
model: TMCI thresholds

« Two regimes of instability in measurements

e Fast instability threshold with linear dependence on &l

« Slow instability for intermediate intensity and low el

* Very well reproduced with HEADTAIL simulations

« SPS impedance model includes kickers, wall, BPMs and RF cavities

» Direct space charge not included

measurements HEADTAIL simulations

05 , 0.5 0.02
Q20 ! Q20
= 2
0.4 4 : 0.4 =
nominal ] _ s _ v ogg st A0 Island of slow 0015 £
> MR -
. e S salkan . aye
~ 03 ¥ e . Y] nstability |~\ 2
= '. "}.;% ap : g =
® r;', v, . ! 3 001 £
e . - . 1 bk
0.2} . 4.5x10% p/b 1 “ 0.2 e
@ 0.35 eVs | o =
: L
0.1 =  Measurement - stable : 0.1 E
*  Measurement - unstable (slow losses) : -
s _Meaguremant - unstabls {fast logses} | |
0 i i i L 1 0 i . 0
N 0 1 2 3 4 5 1 2 3 4 5
CERN N (p/b) x 10" N (p/b) x 10"
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Mode number

0 1 2 3 4

Benchmark of the SPS transverse impedance !}l"[s
model: TMCI thresholds

Slow instability

5
Intensity [1ell ppb] lell
Broadband resonator model SPS impedance model
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Benchmark of the SPS transverse impedance !}l"[s
model: TMCI thresholds

Slow instability

(2] 11

N dwmwmeeq¢ ¢ | ' ' 0'7€ ’ 66&$$éiéilii;;;;‘

—

Mode number

5
Intensity [1ell ppb] lell
Broadband resonator model SPS impedance model
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Benchmark of the SPS transverse impedance model:
TMCI thresholds

"=ozrevs ~Q20 (measurement) ;iz'z;e;ﬁ o : Q0 sl stion)
N=22x10" pib g E=
0.5 0.5
3 i o
E 0 >
z 3
-0.5 =0.5
-1 - = U ; = 2 -2 -1 . 0 1 2
Time (ns) TR? (ns)
measufements HEADTAIII simulations
05 - , 0.5 - 0.02
Q20 ,
I G
nominaly| | _ s _ o oo il o Island of slow 0.015 £
. L L4 - . - L
— 03 e instability |\\ 2
> ; ;% ' <L &
® }_;., : ! 3 oot g
W " 1 —
0.2} . 4.5x10% p/b | ¥ 0.2 e
@ 0.35 eVs | =
I 0.005 ©
0.y Measurement - stable 1 0.1 E
*  Measurement = unstable (slow losses) : -
- _Mezqsur_&!'ner'!t - unstable (fast lossas) 1
0 i i i : 1 i
0 1 2 3 4 5 0 1 2 3 4 5 0
N (p/b) x10" N (p/b) x 10"
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Benchmark of the SPS transverse impedance model:
TMCI thresholds

1 - =0.30 eVs . i i
£, =0.28¢eVs Q20 (measurement) ; = aoxio" o r\,:" b Q20 {mmualition)
N=4.0x10"" pib =R ) ft-. vm\u_

0.5
3 El
s s ©
== =1
<]
-0.5 9.
.}.‘f.';"\
Nt
iy
-1 3 1 0 1 2
-2 -1 0 1 2 - - -
Time (ns) Time (ns)

measurements /\\ HEADTAIL simulé\}ions

0.5 0.5 0.02
Q20
w
. 04 0.4 E
nominaly | _ s s goosei 00 Island of slow g
03 e instability |\\ 2
= [ I ©
o _ : @ 001 £
W " 1 —
0.2 4.5x10* plb ! = 0.2 %
@ 0.35 eVs ! =
. 0.005 O
0.y *  Measurement — stable 1 0.1 E
*  Measurement = unstable (slow losses) : -1
- _Mezqsur_&!'ner'!t - unstable (fast lossas) 1
0 . : . i 1 0 ; 0
0 1 2 3 4 5 1 2 3 4 5
N (p/b) x10" N (p/b) x10"
CE/RW A
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TMCI threshold vs. Qs M)

* By changing the optics to reduce the transition energy, we can increase the
synchrotron tune and by this significantly the instability limit threshold.

* This has been deployed in the SPS where the slippage factor was raised from
(Q26) to (Q20) increasing the instability thereshold by a factor

- Q26 0.035 f{ —— Simulation

. * Measurement — stable ]
Measurement — unstable (fast losses) | .. .|, || || Il
« Measurement — unstable (slow losses)

0.035 | —— Simulation

* Measurement — stable ]

0.031 ° Measurement — unstable (fast losses) | . / ... . .. 1]
+ Measurement — unstable (slow losses)

0.031

0D154“__””__”f_”___””_”ﬂ________;__.__._ :

0.015F

Vertical growth rate (1/turns)
Vertical growth rate (1/turns)

03054”_______4_____“_.fun_“”____L__”””___i 00054_”_“”“__f______m_inun_“”__ﬁ“__.””..:

.
1
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Effect of iIncoherent tune spread &

Finally, we will study the effect of an incoherent tune spread on the beam stability.
Starting from the general Vlasov equation in two dimensions, we evaluated the Poisson
brackets using

* the coordinate transformations (action-angle variables and polar coordinates)
» the decompositions

91(Jy, 0) = g(Jy)e”
fi(t, @) = e~ @y=/ () Z a Ry (r)et?
z

However, the tune now acquires a term that takes into account the detuning with am-
plitude:

Q = Qyo + Q;ﬁ + ayydy + gy Js

CETQW
\

Nyl

0
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Vlasov eg. — 2-dimensional systent ("b

The Vlasov equation with the modified tune simply becomes

Zal”Rl” (T)e’il”gb g(Jy) (2 — wyo — woaryyJy — wWoigydy — 1" ws) —iS2s/(8e)

2JyR
1 90(Jy) ny

N— _/
~—
g(Jy)(Q — wyo — ayyJy — ayJe — 1" wy)

2J, R
90(Jy) 0,

=D

constant in J,, therefore

iQyz/(NR) o /dz Z p(l) —zﬂ(s/(ﬁc) FTOW, (2 — 2" — kcTp)
k——oo Y

pM(z) = /dJy do g(Jy)e yp(z) =

25EC

R wWo
D
QyO I(QC)
o 96(J )Jy
1(Qe) = / Wy e =000 = gy dy — ang s — 170,

p(z)

CE/RW
\

N g

0

January 2015 USPAS — perturbation formalism 79/76

YEARS /ANS CERN



N

Vlasov eq. — 2-dimensional syste

The Vlasov equation with the modified tune simply becomes

Zal”Rl” (T)eil”gb g(Jy) (2 — wyo — woayyJy — woltzyJy — 1"ws) —iQs/(Bc)

2JyR
1 90(Jy) ny

cancels with D; on RHS

What has changed?

iQyz/(NR) o /dz Z p(l) —zﬂ(s/(ﬁc) FTOW, (2 — 2" — kcTp)
k——oo Y

g()(J )Jy
1(Q.) = [ dJ,m—————
( ) / Y QyO CVyy @nyx l/,Qs

What was originally the eigenvalue, resulting in a
linear EV problem, gets now drawn into the integral.

25EC

CE/RW
\

N g
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Vlasov eq. — 2-dimensional syste

We move from the original EV problem (solving for A)

det (SQ — Wy — leZ(Skk/(Su/ — Mkk’,ll/) =0

A

to the non-linear equation which we can solve numerically to obtain the full correct

solution.
w
det (( (; ) Okk' 0117 — Mkk:’,ll’) =0
r(&)

CETQW
\

Nyl
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Vlasov eq. — 2-dimensional system™

Alternatively, we find the eigenvalues A for the case without tune spread.
det (A Ok 017 — Mkk’,ll’) =0

We then identify:

ANQ.) = ——,
l.e. we say that the effect of adding a tune spread does not modify the coherent mode
structure itself (the eigenvectors remain unchanged) but only the complex tune shifts
(the eigenvalues change). Thus, the original complex tune shift without tune spread
(). translates to the new complex tune shift @C. A negative imaginary part will lead
to a stable beam whereas a positive imaginary part will render the beam unstable. A
purely real @C will trace out the stability boundary. We can search for all (). at the
stability boundary by inserting purely real @c and evaluating the dispersion integral.
The resulting curve will devide the plane in two regoins where a given mode (). will
either be stabilised to @C or not. A more detailed discussion will lead to the theory
of stability diagrams and Landau damping. The treatment of these topics is beyond
the scope of this course. Hopefully, however, the study of these topics has well been
motivated by now. /76




THE END
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